
Mathematics of Big Data I

Lecture 8: Kernel PCA, One Class SVMs, and Learning Theory

October 31st, 2016

1 Kernel PCA

Recall that in principle component analysis we find an orthogonal transformation to convert a set of observed
(possibly) correlated values into a set of linearly uncorrelated values. We find the principle directions first
by taking the covariance matrix and finding the means µ1 and µ2 if we are working in two dimensions. We
subtract the x values by µ1 and the y-values by µ2. Projection works very well here in that we maintain an
ellipsoid in the subspace.

1

We will now implement the concept of a kernel by taking a function K = k(x, y) which can be written
as an inner product of another function k(x, y) = ⟨Φ(x),Φ(y)⟩ = Φ(x)TΦ(y). For example we can have
k(x, y) = (xT y + 1)2 or the Gaussian kernel

k(x, y) = exp [− ∣∣x − y∣∣2

2σ2
] .

Recall that we usually take the function Φ ∶ Rn → RN each Euclidean space containing it’s own inner
product. We call the space (RN , ⟨⋅, ⋅⟩) the feature space. We can unambiguously define the cosine of the
angle between two vectors by

cos θ = ⟨Φ(x),Φ(y)⟩√
⟨Φ(x),Φ(x)⟩

√
⟨Φ(y),Φ(y)⟩

.

As we will see later, we know that a function k(x, y) can be written as a kernel if and only if it is symmetric
and positive definite.

2

What if we have the case where our data is not separable, as in the image above? What we want to do in
this case is to transform the data so that it is separable in another space, often of higher dimension. Assume
for instance we can have φ ∶ R2 → R3 given by

φ(x1, x2) = (z1, z2, z3) = (x21,
√

2x1x2, x
2
2) = ⟨x1, x2⟩2.

The key concept of kernel PCA is that it computes the principal components but projects our data onto
these components. We can for instance have the kernel k(x, y) = (xT y + 1)2 and data that is in concentric
circles will be formed into a cone shape:

3

Using a Gaussian kernel gives us a smoother solution:

An important thing is that in addition to our data being separable, we would like our kernel to be smooth.
Here is the key idea. We can cleverly avoid working directly in the feature space, since this will likely be

4

high-dimensional. Instead of solving for the principle components themselves, we actually end up solving
the projections of our data onto the PCA components.

We start with a mapping that takes our data into a higher dimensional space where the data can be
linearly separated. We claim that the eigenvectors can be expressed in the following manner. If v is an
eigenvector, we can write

v =
N

∑
i=1

αiφ(xi).

Proof : Let CF be the covariance matrix of the data in the feature space, and suppose we can write it as

CF = 1

N

N

∑
i=1

φ(xi)φ(xi)T .

Observe then that CF acting on the eigenvector v is written

CF v = λv = 1

N

N

∑
i=1

φ(xi) [φ(xi)T v]

and therefore

v =
N

∑
i=1

(φ(xi)
T v

λN
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=αi

φ(xi)

thus proving the claim ◻

How can we find the vector of coefficients α = (α1, . . . , αN)? We claim that KαT = (Nλ)αT where K is the
kernel matrix

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ(x1)Tφ(x1) φ(x1)Tφ(x2) . . . φ(x1)Tφ(xN)
φ(x2)Tφ(x1) φ(x2)Tφ(x2) . . . φ(x2)Tφ(xN)

⋮ ⋮ ⋱ ⋮
φ(xN)Tφ(x1) φ(xN)Tφ(x2) . . . φ(xN)Tφ(xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof : Observe that the covariance matrix satisfies CF = 1
N
K, and therefore

CF v = λv = 1

N
Kv

and therefore (Nλ)v =Kv but since v = α1φ(x1) + . . . + αNφ(xN) we can write it as

v = [α1 . . . αN]
⎡⎢⎢⎢⎢⎢⎣

φ(x1)
⋮

φ(xN)

⎤⎥⎥⎥⎥⎥⎦
and thus Nλαφ(x) =Kαφ(x). If we multiply on the right by φ(x)T we find

Nλαφ(x)φ(x)T = NλαK = Kαφ(x)φ(x)T = KαK

hence NλαK = KαK and so (Nλα −Kα)K = 0. Now, without loss of generality we can assume (and it is
quite safe to do so) that K is positive definite. In this case, this forces the term in parentheses to be the zero
matrix and thus Kα = Nλα proving that α is an eigenvector associated to the eigenvalue Nλ. In general
we need to normalize (or centralize) the data in the φ-space since φ(xi) may not have zero mean. When we
centralize this we obtain

φ̂(xi) = φ(xi) −
N

∑
j=1

φ(xj)

5

and so we get a normalized kernel function

K̂(xi, xj) = [φ̂(xi)]
T
φ̂(xj)

= [φ(xi) −
N

∑
k=1

φ(xk)]
T

[φ(xj) −
N

∑
l=1

φ(xl)]

= φ(xi)Tφ(xj) −
1

N

N

∑
l=1

φ(xi)Tφ(xl) −
1

N

N

∑
k=1

φ(xk)Tφ(xj) +
1

N2

N

∑
k=1

N

∑
l=1

φ(xk)Tφ(xl)

= K(xi, xj) −
1

N

N

∑
l=1

K(xi,l) −
1

N

N

∑
k=1

K(xk,j) +
1

N2

N

∑
k=1

N

∑
l=1

K(xk, xl).

It’s worth asking, why should we multiply all of this out? Because we want to avoid working directly in
the high-dimensional feature space, the kernel function of the PCA is restricted in that it computes not the
principal components themselves, but the projection of our data onto those components. To evaluate the
projection from a point in the feature space Φ(X) onto the jth principal component vj :

vTj φ(x) = [
N

∑
i=1

αiφ(xi)]
T

φ(x)

where we observe that φ(xi)Tφ(x) =K(xi, x) which is an element of the kernel. Therefore we find

vTj φ(x) =
N

∑
i=1

αjK(x,xi) ≜ yj .

We can summarize the above as follows:

• Choose a kernel function,

• Construct the normalized kernel matrix,

• Solve an eigenvalue problem where Kαj = Nλjαj and

αj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

αj1
αj2
⋮

αjN

⎤⎥⎥⎥⎥⎥⎥⎥⎦

is an eigenvector associated to λ of the kernel matrix K. Finally set

yj =
N

∑
i=1

αjiK(x,xi)

for j ∈ {1, . . . ,N}.

An important theorem is Mercer’s theorem which shows that as long as the function k(x, y) is symmetric
positive-definite then it can be written as a kernel.

Theorem 1 (Mercer’s Theorem) A symmetric function K(x, y) can be expressed as an inner product
K(x, y) = ⟨φ(x), φ(y)⟩ for some φ if and only if K(x, y) is positive semi-definite meaning

∫ K(x, y)g(x), g(y)dxdy ≥ 0

for all suitable functions g, or equivalently semi-definite in the discrete case as a matrix.

There are numerous applications of kernel methods:

6

1. Turn any linear model into a non-linear model applying the kernel trick to the model.

2. Support vector machines,

3. Gaussian processes,

4. Principal component analysis,

5. Canonical correlational analysis,

6. Ridge regression,

7. Spectral clustering,

8. Linear adaptive filters,

9. The kernel perceptron,

and many other algorithms.

2 One-Class Support Vector Machines

The goal of machine learning is to distinguish test data. But if we only have one class of data and the goal
is to test new data, then how well are we able to train our machine. One method for this is called one-class
support vector machine. This is only here as a side note since most of this is covered in the textbook.

3 Learning Theory

We will be discussing bias/variance trade-off, union and Chernoff/Hoeffding bounds, and briefly on the VC
dimension. This section will closely follow Prof. Ng’s notes of Stanford University.

7

Observe in the above fitting problem, we see that if we underfit the data we end up incurring a large bias in
our fit, but overfitting yields a similar problem. If we overfit the data then we pass through every data point
but the model is now very sensitive to new inputs. Fitting the curve with a degree-2 polynomial is a good
fit. We see that we incur a large generalization error in the case of underfitting or overfitting. There are two
different types of error. What learning theory does is relates bias error to large variance. To illustrate this,
say we have a training set with lots of spurious data. We may obtain a model with large generalization error
particularly with large variance. There is a tradeoff here. If our model is too “simple” with few parameters,
we may have a large bias but very small variance. Similarly, if the model is too “complex” then our model
may have too many parameters and may be prone to high variance (but smaller bias). To do this analysis
we need two bounds.

Definition 1 Let A1, . . . ,Ak be k many different events. Then the union bound is that

p(A1 ∪ . . . ,∪Ak) ≤
k

∑
i=1

P (Ai).

Definition 2 Let Z1, . . . , Zm be m-many IID random variables drawn from a Bernoulli distribution with
parameter φ, meaning P{Zi = 1} = φ. Define

φ̂ = 1

m

m

∑
i=1

Zi

which is the mean of the random variables. Let γ > 0 be fixed, then the Chernoff/Hoeffding bound is
given by

P {∣φ − φ̂∣ > γ} ≤ 2 exp (−2γ2m) .

The meaning of the Chernoff/Hoeffding inequality is that the average of the Bernoulli random variable then
our probability of being far from the mean decreases exponentially with the number of random samples
drawn from the distribution. As an example, if someone has a biased coin whose probability of landing on
heads is φ ≥ 0.5, then if you toss it m times and calculate the fraction of times that it came up heads will be
a good estimate of φ with high probability (provided that m is large).

In our further analysis we will need these two bounds. To make our discussion easier, let’s say that
our parameter γ ∈ {0,1}. Everything we do with this restriction does in fact generalize to other classes of
problems. Suppose we have a training set S = {(x(i), y(i))} for i ∈ {1, . . . ,m}. The training samples are
drawn IID from a distribution D. For a hypothesis h, we define the training error to be

ε̂(h) = 1

m

m

∑
i=1

1{h(x(i)) ≠ y(i)} .

which is just the fraction of the training samples that the hypothesis h misclassifies. The generalization
error is defined as

ε(h) = P(x,y)∼D(h(x) ≠ y)

which is the probability that given a new training point (x, y) drawn from the same distribution, that h will
misclassify it. Our assumption that the new data point is drawn fom the same distribution is one of the
PAC assumptions (“probably approximately correct”). In a certain sense the training error will be close to
the generalization error with high probability. In the setting of linear classification, let hθ(x) = 1{θTx ≥ 0}.
What’s a reasonable fitting of the parameters θ? One approach is to minimize the training error and pick

θ̂ = arg min
θ

ε̂(hθ).

This process is called empirical risk minimization (ERM). We think of ERM as the most basic learning
algorithm, and the one we focus on in the following treatment.

We define the hypothesis class H as

8

H = {hθ ∶ hθ(x) = 1{θTx ≥ 0}, θ ∈ Rn+1} .

We can now think of ERM as minimization over the class of function on H. For the sake of this class, we
will assume that H is finite. We would like to give guarantees on the generalization error of h. Our strategy
for doing so will be in two parts: we will show that ε̂(h) is a reliable estimation of ε(h) for all h. We will

also show that this implies an upper bound on the generalization error of ĥ. We find that ε̂(h) is exactly
the mean of m random variables drawn IID from a Bernoulli distribution, hence we can use the Chernoff
bounds. If we generalize for all the hi on H, we find that

P{∃ h ∈H ∶ ∣ε(hi) − ε̂(hi)∣ > γ} ≤ 2k exp (−2γ2m) .

What we’ve shown is that this is true simultaneously for any h ∈ H. Subtracting both sides by 1, we find
that

P{¬∃ h ∈H ∶ ∣ε(hi) − ε̂(hi)∣ > γ} ≥ 1 − 2k exp (−2γ2m) .

where ¬∃ means “there does not exist”. We will have that ε(h) will be within γ of ε̂(h) for all h ∈ H. This
is called uniform convergence since this holds for everything in H. The quantities m,γ, δ can be adjusted
and we can solve for bounds in terms of one variable in terms of the other two. For instance, given γ and
δ > 0, then in order to have a probability of at least 1 − δ for training error to be within γ is given by

m ≥ 1

2γ2
log

2k

δ

where k = ∣H∣. We can find similar inequalities for the other cases.

Theorem 2 Let ∣H∣ = k and let any m,δ be fixed. Then with probability at least 1 − δ we have that

ε (ĥ) ≤ (min
h∈H

ε(h)) + 2

√
1

2m
log

2k

δ
.

Corollary 1 Let ∣H∣ = k and let δ, γ be fixed. Then for ε (ĥ) ≤ minh∈H ε(h) + 2γ to hold with probability at
least 1 − δ, suffices that

m ≥ 1

2γ2
log

2k

δ
= O (1

γ2
log

k

δ
) .

9

