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1 Introduction

The kernel method is related to the dual view of the support vector machine. Suppose for instance we have
an ellipse in the plane:

(x1
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)
2

+ (x2
b
)
2

= 1.

We can define the map φ(x1, x2) = (x21,
√

2x1x2, x
2
2) and then eventually we will want to compute our solution

in terms of the inner product ⟨φ(x), φ(y)⟩ and therefore we can transform a nonlinear problem into a linear
one.

2 Support Vector Machine (Continued)

Recall that the SVM method is based on a geometrically intuitive argument so that we can draw a decision
boundary between two different classes of data. Today our focus will be on the dual method, so that we
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can express everything in terms of an inner product. Remember that the functional margin is given by
γ̂(i) = y(i)(wTx + b) with respec to a certain training sample and we can take γ̂ = mini γ̂

(i).

The method from SVM can be extended to any quantity we’re interested in. For example, suppose we want
to find the point B on the hyperplane such that it is written in a way that involves γ(i). Therefore since
B is in the hyperplane B satisfies the plane equation and therefore γ(i) will satisfy a certain equation. For
example, if x and p are two points on the plane, we want our support vector w to satisfy (x − p) ⊥ w if and
only if wT (x − p) = 0 if and only if wTx + b = 0 where we take b = −wT p, and therefore for all nonzero r ∈ R
we can write (rw)Tx − (rw)T p = 0. We will take advantage of this freedom with r later. If we divide the
functional margin equation by the norm of w squared, we obtain the geometric margin:

γ(i) = wTx(i)

∣∣w∣∣2 + b

∣∣w∣∣2 .

The problem here is that this is a nonconvex problem. We can however transform this into a convex problem.
We can inherently build in ∣∣w∣∣ = 1 and utilize this to obtain a convex problem. We can instead turn our
optimization problem into maximizing γ subject to the constraints that ∣∣w∣∣ = 1 and

y(i)(wTx(i) + b) ≥ γ

for i ∈ {1, . . . ,m}. Starting with this last conditions we can cleverly write this as

y(i)(wTx(i) + b) = y(i) ( w

∣∣w∣∣ )
T

x(i) + b

∣∣w∣∣ ≥ γ

∣∣w∣∣
= y(i)ŵTx(i) + b̂ ≥ γ

∣∣w∣∣ .

Our optimization now becomes to maximize γ̂
∣∣w∣∣

which occurs if and only if we maximize 1
∣∣w∣∣

which occurs if

and only if we minimize ∣∣w∣∣ which occurs if and only if we minimize 1
2
∣∣w∣∣2, and therefore we have a convex

problem.
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3 Lagrange Duality

We want to take what we learned in constructing the SVM to developing a new form of machine learning
called kernel methods. First we need to look at the SVM from a dual point of view, so that we can express
everything in terms of an inner product. Consider the general problem of

min
w
f(w) such that hi(w) = 0

for i ∈ {1, . . . , l}. We define the Lagrangian as

L(w,β) = f(w) +
l

∑
i=1

βihi(w).

The components of β = [ β1 . . . βl ]T are called the Lagrange multipliers. In a traditional Lagrange

multiplier problem we take the partial derivatives ∂L
∂wi

= 0 and ∂L
∂βj

= 0 and solve for w and β in these

situations. Now this problem is easy if these equations are constrained to be equal, but in general we have to
deal with inequalities. The problem here is we want minw f(w) subject to the constraints there are functions
gi(w) ≤ 0 and hj(w) = 0 for i ∈ {1, . . . , k} and j ∈ {1, . . . , l}. This kind of optimization is called a primal
optimization problem. The generalized Lagrangian is given by

L(w,α,β) = f(w) +
k

∑
i=1

αigi(w) +
l

∑
j=1

βjhj(w).

How do we get rid of the inequalities in our constraints? Consider the quantity

θP(w) = max
α,β;αi≥0

L(w,α,β)
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where the P denotes the primal optimization. To start this, suppose some quantity w is chosen. If w violates
any of the primal constraints then you can verify that θP(w) =∞. Conversely if the constraints are required
to satisfy θP = f(w) for a particular value of w then we can conclude that

θP(w) =
⎧⎪⎪⎨⎪⎪⎩

f(w), if w satisfies the primal constraints

∞, otherwise
.

We can therefore get rid of the inequalities since our original problem is equivalent to

min
w
f(w) = min

w
θP(w) = min

w
max

α,β;αi≥0
L(w,α,β).

For later use we also define the optimal value of the objective p∗ = minw θP(w). If we consider a different
problem, say

θD(α,β) = min
w
L(w,α,β)

then we can solve the dual problem. The difference here is we find that minimum of the Lagrangian with
respect to w and then follow this by maximizing with respect to the coordinates α,β. The dual problem
thus stated is given by

max
α,β;αi≥0

θD(α,β) = max
α,β;αi≥0

min
w
L(w,α,β).

The obvious question to ask here is does the solution to the dual problem coincide with that of the
primal problem? In general the answer is no. If the solution of the dual problem is given by d∗, then we
have that d∗ ≤ p∗ for all Lagrangians. Under certain conditions we do obtain equality, which is important
since the dual problem can be formulated strictly in terms of an inner product. What are these conditions?

1. The functions f, gi are all convex functions and the hj are affine.

2. The constraints gj are strictly feasible meaning there exists some w such that gj(w) < 0 for all j.

These conditions yield the existence of some w∗, α∗, β∗ so that w∗ is the solution to the primal problem
and α∗, β∗ are the solutions to the dual problem. Moreover p∗ = d∗ and L(w∗, α∗, β∗) satisfy the Kuhn-
Kusher-Tucker or KKT Conditions:

∂

∂wi
L(w∗, α∗, β∗) = 0

∂

∂βi
L(w∗, α∗, β∗) = 0

α∗i gi(w∗) = 0

gi(w∗) ≤ 0

α∗ ≥ 0.

The dual complimentary condition is that α∗i gi(w∗) = 0 for all i ∈ {1, . . . , k}. This implies that if α∗i > 0
the gi(w∗) = 0. This will later be key in showing that SVM needs only a small number of support vectors,
and will also be of importance in showing convergence of the SMO algorithm.

Recalling the convex form of SVM, our problem is

min
γ,w,b

1

2
∣∣w∣∣2 such that y(i)(wTx(i) + b) ≥ 1.

We can simply take

gi = −y(i)(wTx(i) + b) + 1 ≤ 0.
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To find the dual problem we need to minimize L with respect to w and b first for fixed α to get θD. We
therefore have

L(w, b,α) = 1

2
∣∣w∣∣2 −

m

∑
i=1

αi [y(i)(wTx(i) + b) − 1]

and to minimize we get

∇wL(w, b,α) = w −
m

∑
i=1

αiy
(i)x(i) = 0.

We eventually arrive at the dual optimization problem:

max
α

W (α) =
m

∑
i=1

αi −
1

2

m

∑
i,j=1

y(i)y(j)αiαj⟨x(i), x(j)⟩

such that αi ≥ 0 and
m

∑
i=1

αiy
(i) = 0.

The cool thing about this problem is that we can rewrite the quantity

wTx + b = (
m

∑
i=1

αiy
(i)x(i))

T

x + b

=
m

∑
i=1

αiy
(i) ⟨x(i), x⟩ + b.

4 Kernel Methods

Duality plays a very important role in solving a certain class of nonlinear problems. This falls in the realm
of kernel methods. We want to utilize something close to an inner product, but with an important
modification. To illustrate what we’re interested in, consider K(x, z) = (xT z)2 where x, z ∈ Rn. After some
computation we can write

K(x, z) =
n

∑
i,j

(xixj)(zizj).

Let’s suppose instead that we write the function

φ(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1x1
x1x2
x1x3
x2x1
x2x2
x2x3
x3x1
x3x2
x3x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

then we can write K(x, z) = φ(x)Tφ(z), hence we can write K in terms of an inner product of the function
of it’s coordinates. More broadly the kernel K(x, z) = (xT z + c)d corresponds to a feature mapping to an
(n+d
d

) dimensional feature space corresponding to all monomials of the form xi1xi2 . . . xik that are up to order
d. To formalize this

Definition 1 Given a feature mapping φ we define the corresponding kernel as the mapping K(x, z) =
φ(x)Tφ(z) = ⟨φ(x), φ(z)⟩.
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The kernel can be viewed as a way to measure similarities. For instance by measure the inner product
φ(x)Tφ(z) we can infer how similar the values x and z are. An example of this is the Gaussian kernel:

K(x, y) = exp(− ∣∣x − y∣∣2
2σ2

) .

This can be a reasonable measure since x and y will be very close to each other if K(x, y) ≈ 1 and they are
very far if K(x, y) ≈ 0. The feature mapping here is actually infinite-dimensional. More broadly though we
ask if given a kernel K is there some feature mapping φ such that K(x, z) = ⟨φ(x), φ(y)⟩. To answer this
question we introduce the kernel matrix K where given a training set {x(1), . . . , x(m)} then the matrix K
has entries Kij = ⟨x(i), x(j)⟩. It is straight-forward to show that K is symmetric and positive semi-definite,
meaning that zTKz ≥ 0 for all z.

Theorem 1 (Mercer) Let K ∶ Rn ×Rn → R be given. Then for K to be a valid kernel it is necessary and
sufficient that for any {x(1), . . . , x(m)} the corresponding kernel matrix is symmetric positive semi-definite.
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