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1 SVM Continued

Recall that the support vector machine is a means of classifying data into binary groups. We want to maxi-
mize the margin (distance between distinct classes of data) so we have greater confidence in our prediction.
Generally we would like to formulate this in terms of a convex problem, but if it’s not then we can formulate
in terms of a quadratic programming (QP) problem. Another method is by using kernel methods which
allows us to solve a larger class of nonconvex problems.

When we derive the support vector machine, we use our geometric intuition for assigning a cost function
to our given problem. One question we have is the following: How can we teach a machine to deal
with a margin swinging problem? What this problem is that the decision boundary is very sensitive to
outliers, which makes the decision boundary “swing” dramatically with the addition of new data points.
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2 Regularization

The answer to this is L1-regularization. Recall that the Lp norm of a vector x ∈ Rn is given by

∣∣x∣∣p = (
n

∑
i=1

∣xi∣p)
1/p

.

We see that these are different metrics and therefore, viewing Rn as a metric space with respect to these
different metrics, we yield different models for open unit balls. For instance when p = 2 this yields the
standard Euclidean norm and the model for unit ball is the solid sphere (a disc when n = 2, a solid sphere
when n = 3, and their higher-dimensional analogs).

Regularization is a technique used to solve an overfitting problem in statistical models. Overfitting happens
for example when we fit a polynomial to a set of data point in R2, but our fitted curve passes through every
point of data without capturing the macroscopic structure of the data.
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One method is called a lasso, standing for least absolute shrinkage and selection operator.

Here we consider the Lp-ball around the origin in our parameter space, and draw ellipsoids around our
parameter point. We expand these ellipsoids (maintaining the same shape) until we intersect the unit p-ball.
The nearest axis to which the ellipsoid intersect the ball tells us which variable among our parameters is the
most important in our model. This is why we are able to obtian sparse solutions with the lasso method.

3 Bayesian Approach

Many times in data analysis we use a geometric approach, say like support vector machine. However, another
approach to data analysis is to use a Bayesian approach, which utilizes techniques from probability to solve
a problem. Here, no model is needed for the problem but everything simply uses methods from probability.
Within Bayesian methods we can have näıve Bayes models and näıve Bayes classifiers. If we have
a probabilistic model the “näıve” part is to assume that multiple observations are IID random variables.
Recall that

p(Ck ∣x) = p(Ck)p(x∣Ck)
p(x)
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where p(Ck) is called the prior, and p(Ck ∣x) is the posterior, p(x∣Ck) is the likelihood, and p(x) is the
evidence. In näıve Bayes we assume that each feature is conditionally independent of every other feature.
We have a chain rule in probability such that if our probability we’re looking for is p(Ck, x1, . . . , xn) we can
decompose it as

P (Ck ∣x1, . . . , xn) ∝ p(Ck)
n

∏
i=1

p(xi∣Ck).

A probabilistic classifier is a classifier that is able to predict a probability distribution over a set of classes,
rather than only outputting the most likely class that a sample should belong to. Probabilistic classifiers
provide classification with a degree of certainty. Binary probabilistic classifier are also called binomial
regression models in statistics. Oftentimes what we are trying to do is solve an optimization problem

ŷ = arg max
y

Pr(Y = y∣X).

We want to illustrate how this may work with the Laplace distribution, where x ∼ Lap(µ, b) if it’s density is

f(x∣µ, b) = 1

2b
exp(−∣x − µ∣

b
) .

Observe how the L1 norm is a part of this.

Another important distribution is a student t-distribution, which mimics a Gaussian but has the advantage
of having compact support (whereas the Gaussian has the entire real line as it’s domain.

4 Review Topics for Midterm

4.1 Ridge Regression and Lasso Method

Recall that ridge regression is simply an L2-regularization penalty added to our cost function. Note that lasso
is a regression method that involves penalizing the absolute size of the regression coefficients. Penalization
forces some of the entries to be exactly zero which encourages sparsity in our solutions. This is useful when
we want some automatic feature selection, or if we’re dealing with highly correlated predictors, standard
regression may yield coefficients that are too large. Here we can compare our regression problems:
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β̂ridge = arg min
β∈Rp

∣∣y −Xβ∣∣22 + λ∣∣β∣∣22

β̂lasso = arg min
β∈Rp

∣∣y −Xβ∣∣22 + λ∣∣β∣∣1.

While the models are quite similar they can yield vastly different solutions to their respective optimization
problems. The parameter λ controls the strength of the penalty. We want to balance two competing ideas
in our model: fitting a linear model y on X and shrinking the coefficients. The result however the L1

regularization term in lasso regression is that the model will force some entries in our parameters to be
exactly zero. Increasing λ suppresses coefficients to be zero and there is more shrinkage.

4.2 Marginal and Conditional Probabilities of the Multivariate Normal Distri-
bution

If we’re given jointly Gaussian random variables x = [x1 x2] with parameters

µ = [ µ1

µ2
] Σ = [ Σ11 Σ12

Σ21 Σ22
] = Λ = Σ−1 = [ Λ11 Λ12

Λ21 Λ22
]

then the marginal distributions are given by p(x1) = N(x1∣µ1,Σ11) and p(x2) = N(x2∣µ2,Σ22). The poste-
rior conditional is given by

p(x1∣x2) = N(x1∣µ1∣2,Σ1∣2)
µ1∣2 = µ1 +Σ12Σ−122(x2 −µ2)
Σ1∣2 = Σ11 −Σ12Σ−122Σ21 = Λ−111 .

The proof of the above decomposition is given using the Schur decomposition detailed in the picture below:
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To discuss principle component anaylsis, take x⃗ to be a vector and let it’s covariance matrix be given by
Σ = Cov(x⃗). We know that since Σ is symmetric positive semi-definite, then there exists a matrix P satisfying
PPT = PTP = I, a diagonal matrix D of the corresponding eigenvalues and Σ = PDPT . We can rearrange
these matrices so that the eigenvalues are in descending order with the largest eigenvalue in the upper left
corner of D. In general if we have a data matrix X which is d × n in size we can find the diagonalizations
of XTX = V D1V

T and XXT = UD2U
T . Note that while D1 and D2 are different sizes, they have the same

nonzero eigenvalues. This gives us the singular value decomposition X = UDV T .
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