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Recall from last time that when dealing with big data, the closed formula involving an inverse of a huge matrix
may not be fast or stable if we try to invert the matrix directly. Therefore we need to try other computational
methods, such as the Cholesky decoposition, gradient descent, stochastic gradient descent, and Newton’s
method. Recall that there are several different ways we can go about the Cholesky decomposition. For
instance, we can see this simply as elementary row operations:

[ 1 2
3 4

] → [ 1 0
−3 1

]
−1

[ 1 2
0 −2

] = [ 1 0
3 1

] [ 1 2
0 −2

]

where the final result is an LU-decomposition. In the special case that our original matrix is symmetric, we
can get both the lower and upper parts to be the same. Another way of doing this is simply to use “brute
force,” and lastly we can also use symmetric matrices.

Theorem 1 If A is an n × n real, symmetric positive-definite matrix, then there exists a unique lower
triangular matrix G with positive diagonal elements such that A = GGT .

Proof : Observe that if we can uniquely decompose A = LDU , then we have that AT = A = UTDLT

proving that L = UT and therefore A = LDLT . Also if A is positive-definite, we can take the square-root of
the diagonal matrix D by simply taking the square-root of all of the diagonal entries. Then we can write
A = L

√
D

√
DLT = GGT where we let G = L

√
D. ◻

Note that if Ax = b, we can solve this by back-substitution, but by using the Cholesky decomposition we can
see back substitution as a faster way to do it.

To solve the Cholesky decomposition by brute force, we simply assume that

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
⋮ ⋮ ⋱ ⋮
an1 an2 . . . ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

l11 0 . . . 0
l21 l22 . . . 0
⋮ ⋮ ⋱ ⋮
ln1 ln2 . . . lnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u11 u12 . . . u1n
0 u22 . . . u2n
⋮ ⋮ ⋱ ⋮
0 0 . . . unn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= LU.

In regression it is often the case that XTX is positive-definite.
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1 The Schur Complement

This is related to how we triage data and solve a smaller problem involving big data first. Let A be a
symmetric positive-definite matrix. Then A can be diagonalized via an orthogonal matrix, so there exists a
matrix P such that P −1 = PT and A = PDPT where D is diagonal, containing the eigenvalues of A. Since
A is positive-definite then each eigenvalue λi > 0 where i ∈ {1, . . . , n}. We then see we can write

A = P

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
λ1 √

λ2
⋱ √

λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=G

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
λ1 √

λ2
⋱ √

λn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

PT

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=GT

= GGT .

This is related to the Pfaffian decomposition, where since we have A = P
√
D

√
DPT we can stick another

copy of I = PPT , so we can write

A = P
√
DPPT

√
DPT = QQ = Q2

where Q = P
√
DPT . The matrix Q is the Pfaffian decomposition.

Moving forward, let’s discuss an example which will illustrate how we want to deal with big data. Recall the
normal equation from linear regression:

θ⃗ = (XTX)−1XT y⃗

where the vector θ⃗ contains the parameters we want to fit. Even if we want to fit a parabola, we can still use
the normal equation since we can write our equations to be linear in the parameters we want to learn, even
if the equation we are modeling is nonlinear. For instance, we could be finding the best parabolic equation
y = θ0 + θ1x + θ2x2 given data X and targets y.
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We can arrange our various equations into a matrix so that we want to solve Xθ⃗ = y⃗. We want a solution
to this equation so that Xθ⃗ − y⃗ is orthogonal to the column space of X, in other words we would like
XT (Xθ⃗ − y⃗) = 0, and thus XTXθ⃗ = XT y⃗. In the case where XTX is positive-definite (which it is likely to
be) we can invert it. However, inversion yields a problem if XTX is a large matrix. In this case we can
reasonably not have enough memory to invert. We instead have another approach to this: suppose that
XTX has a block form

XTX = [ A B
C D

] .

Here we assume that A is p× p, B is p× q, C is q × p, and D is q × q, where p+ q = N . In solving the normal
equation we can write

XTXθ⃗ = [ A B
C D

] [ β⃗
η⃗

] = [ b⃗

h⃗
] .

where θ⃗ gets broken up into it’s first p components contained in β⃗ and it’s last q components in η⃗. Similarly,
the vector XT y⃗ gets broken up into the first p entries in b⃗ and the last q entries in h⃗. This matrix equation
is equivalent to solving the system of equations

Aβ⃗ +Bη⃗ = b⃗

Cβ⃗ +Dη⃗ = h⃗.

Suppose now that D is invertible, and let’s multiply the second equation by −BD−1 and add it to the first
equation. We then obtain

(A −BD−1C)β⃗ = −BD−1h⃗ + b⃗.

Here the matrix A −BD−1C is called the Schur complement of D. We thus transformed our problem of
inverting XTX into a smaller problem. First we solve the above equation for β⃗ and then solve for η⃗. There
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are other ways we can obtain a Schur complement. Initially suppose that XTX is of the same block form
given above. Suppose again that D is invertible. Let’s perform some of the following operations: we can
multiply column two on the write by −D−1C and add it to the first column of our original matrix. We then
obtain

[ B
D

] → [ −BD−1C
−C ]

which is a column operation, so we obtain

[ A −BD−1C B
0 D

] .

We can actually put XTX into block diagonal form by the operation

[ Ip −BD−1

0 Iq
] [ A B

C D
] [ Ip 0

−D−1C Iq
] = [ A −BD−1C 0

0 D
]

and therefore we can decompose XTX as

[ A B
C D

] = [ Ip BD−1

0 Iq
] [ A −BD−1C 0

0 D
] [ Ip 0

D−1C Iq
] .

Similarly one can find the inverse of XTX now using this Schur complement:

[ A B
C D

]
−1

= [ Ip 0
−D−1C Iq

] [ (A −BD−1C)−1 0
0 D−1 ] [ Ip −BD−1

0 Iq
]

= [ (A −BD−1C)−1 −(A −BD−1C)−1BD−1

−D−1C(A −BD−1C)−1 D−1 +D−1C(A −BD−1C)−1BD−1 ] .

This has many applications to probability and statistics. For example, given a covariance matrix Σ we can
write

Σ = [ A B
BT C

]

then we can write Cov(x∣y) = A −BC−1BT . When dealing with a cost function, we are always dealing with
an optimization problem. We usually like to use a quadratic cost function, but in the case we don’t have a
quadratic cost function, then we can represent it locally by it’s Taylor expansion in which case the Hessian
gets involved.
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2 Multivariate Gaussian Distribution

The single-variable Gaussian is called the univariate Gaussian. Recall that the single-variable Gaussian is
given by the probability density

p(x;µ,σ2) = 1

σ
√

2π
exp(−(x − µ)2

2σ2
) .

There are different ways to find the expectation for a probability density function f , where the expectaiton
is given by

E[X] = ∫
∞

−∞
xf(x)dx.

Therea re generally three different ways to compute the expectation:

• Argue the mean is a certain value using symmetry: for instance the standard Gaussian we want to

integrate xe−x
2/2 which is odd about the origin, hence it is odd and E[X] = 0.

• Directly integrate the function.

• Use the moment generating function.

Let’s focus on the moment-generating function. Recall that given a random variable X it’s moment gener-
ating function is given by

φ(t) = E[etX].

For instance, for the Gaussian distribution it’s moment generating function is given by φ(t) = et
2/2. We then

write this function into a Taylor series
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et
2/2 = 1 + t

2

2
+ 1

2
( t

2

2
)
2

+ 1

3!
( t

2

2
)
3

+ . . . + 1

n!
( t

2

2
)
n

+ . . .

but let’s compare this to the Taylor expansion of E[etX] which is given by

E[etX] = 1 +E[X]t + 1

2
E[X2]t2 + . . . + 1

n!
E[Xn]tn + . . .

We can compare both of these expressions and see that there is no t term in the expansion of φ(t), which
proves that E[X] = 0. Now, while this was fine for the standard Gaussian distribution N (0,1), what if we
have a general distribution X ∼ N (µ,σ2)? We can uncover the mean and variance by performing certain
tricks. Observe for instance if we wanted to compute the mean E[X] we can see that

E[X] = ∫
∞

−∞
1

σ
√

2π
x exp(−(x − µ)2

2σ2
)

= ∫
∞

−∞
x − µ
σ
√

2π
exp(−(x − µ)2

2σ2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+µ∫
∞

−∞
1

σ
√

2π
exp(−(x − µ)2

2σ2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= µ

where the first term is an odd function, while the second equation is just an integral over the density function.
Tricks like this abound in probability, and a similar computation can be done to compute the variance of
the single-variable Gaussian.

Now when we deal with the multivariate Gaussian we denote this distribution as

N (x∣µ,Σ) ≜ 1

(2π)D/2∣Σ∣1/2
exp [−1

2
(x − µ)TΣ−1(x − µ)]

where the inverse Σ−1 is called the precision matrix. Here Σ is the covariance matrix with respect to the
entries in x.
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3 Generative Learning Algorithms

We’d like to introduce the concepts behind generative learning algorithms. Let’s illustrate this with a real-
world problem: suppose we have a body scan of a tumor and we would like to make a reasonable prediction
as to whether this tumor is malignant or benign. We have historical data for tumors of some variety, but
we would like a conditional probability on classifying a new tumor. We will mainly study a distribution
p(y∣x; θ) and try to model this conditional distribution based on the classes y (malignant/benign), previous
data x (data for tumors) and a parameter θ (a collection of variables with which we can adjust or “learn”
the conditional distribution to model our problem appropriately). Our goal is to learn the true distribution
p(y∣x) or learn a function hθ(x) ∈ {0,1}. We will model this using a logistic regression model, so that
hθ(x) = g(θ) where g(θ) was taken as the sigmoid function.

In contrast to this approach, we will try to understand this problem via a generative learning algorithm.
Here we instead look at the historical data of p(x∣y) (the distribution of tumors given that we know if they’re
benign or malignant). We also look at the distribution for classifying tumors p(y), but our goal still remains
to predict whether a new tumor is malignant/benign hence we still want to learn p(y∣x). We can use Bayes’
rule from probability to write this as

p(y = 1∣x) = p(x∣y = 1)p(y = 1)
p(x)

where here we have

p(x) = p(x∣y = 1)p(y = 1) + p(x∣y = 0)p(y = 0).
We therefore model our distribution using Bayes’ rule. Here we need to remember certain things from
probability theory. Recall that probability is a function on events A. For instance, p(A) is the probability
that event A is true. The event A is the event that A does not occur. It follows that p(A) = 1 − p(A).

In order to make a prediction, we want to maximize the likelihood so that

arg max
y

p(y∣x) = arg max
y

p(x∣y)p(y)
p(x)

= arg max
y

p(x∣y)p(y)

where we use the fact that p(x) does not depend on y, and therefore does not contribute to finding the
maximum argument. We therefore want to find the variable y such that the conditional probability is
maximized.

3.1 Gaussian Discriminant Analysis (GDA)

Our first look at a generative learning algorithm will be using the Gaussian discriminant analysis. We assume
that in our problem above that p(x∣y) is distributed according to a multivariate normal distribution (MND)

p(x∣y;µ,Σ) = 1

(
√

2π)n∣Σ∣1/2
exp [−1

2
(x − µ)TΣ−1(x − µ)] ≜ N (µ,Σ).

Here the µ ∈ Rn and Σ ∈ Rn×n. We also assume y is a Bernoulli random variable parameterized by φ. The
GDA model is that y ∼ Bernoulli(φ) and x∣y = 0 ∼ N (µ0,Σ) and x∣y = 1 ∼ N (µ1,Σ). Notice here that the
normal distributions have different means µ0 and µ1 but their covariance matrices are the same. Observe
that our densities are given by

p(y) = φy(1 − φ)1−y

p(x∣y = 0) = 1

(
√

2π)n∣Σ∣1/2
exp [−1

2
(x − µ0)TΣ−1(x − µ0)]

p(x∣y = 1) = 1

(
√

2π)n∣Σ∣1/2
exp [−1

2
(x − µ1)TΣ−1(x − µ1)] .

We therefore see that the parameters of our model are φ,µ0, µ1, and Σ. The log-likelihood of the data is
given by
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l(φ,µ0, µ1,Σ) = log [
m

∏
i=1
p (x(i), y(i);φ,µ0, µ1,Σ)]

= log [
m

∏
i=1
p (x(i)∣y(i);φ,µ0, µ1,Σ)p (y(i);φ)] .

If we want to maximize l with respect to the parameters (homework problem), we find that our parameters
must be

φ =
m

∑
1=1

1{y(i)=1}

µ0 =
∑mi=1 1{y(i)=0}x

(i)

∑mi=1 1{y(i)=0}

µ1 =
∑mi=1 1{y(i)=1}x

(i)

∑mi=1 1{y(i)=1}

Σ = 1

m

m

∑
i=1

(x(i) − µy(i)) (x(i) − µy(i))
T
.
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