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1 A Big Picture of Probability Theory

The way we understand probability theory is by thinking of everything in terms of a function. We can view
P , the probability measure, as a function that takes a random variable X as input and outputs a number
P (X = x) which lies in the interval [0,1]. The sum of all probabilities P (x) should be one. There are four
types of random variables we may come across:

1. Single-Variable and Discrete: for example, the binomial distribution.

2. Single-Variable and Continuous: for example, the Gaussian/Normal random variable.

3. Multivariable and Discrete: for example, the multinomial distribution.

4. Multivariable and Continuous: for example, the multivariable Gaussian.

It’s important to know how to take transformations of random variables. For instance, we can take linear
combinations of them, but we have to know how to modify the original probabilities so that our resulting
probability will still have values P (x) ∈ [0,1]. Let’s consider an example of a matrix acting on a vector of
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random variables. In this case we can let x1, . . . , xn be n random variables, as well as y1, . . . , yn. We can
write a matrix equation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
⋮ ⋮ ⋱ ⋮

an1 an2 . . . ann

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1
y2
⋮

yn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and we can summarize this equation as Ax⃗ = y⃗. An example in which we might relate random variables in
this way is by looking at stock trading.

One of the most important concepts in probability is that of the expectation value. If we let X be a
random variable, and important quantity to compute is the expectation of the nth power of X, or rather
E[Xn]. This is called the nth moment of the random variable X.

It’s also important to know the conditional probability of a random variable X. For instance, if A and B
represent events of a random variable, we would like to know what the probability of A occuring with prior
knowledge that B has already occured. We denote this quantity as P (A∣B) and this is given by

P (A∣B) =
P (A ∩B)

P (B)

where A∩B is the event that both A and B occur. This gives rise to Bayes’ rules which gives us a method
of computing P (B∣A) if we already know P (A∣B).

Associated to any random variable we are always guaranteed a probability mass/density function for dis-
crete/continuous random variables. However, there are three additional functions that we can always asso-
ciate to random variables:

1. Cumulative Distribution Function: Given a random variable X, the cdf is given by FX(t) = P (X ≤

t), which is valid for both discrete and continuous random variables.

2. Characteristic Function: This is defined as E[eitX].

3. Moment-Generating Function: This is given by E[etX].

1.1 Covariance of Random Variables

Given two random variables X and Y , we define the covariance of X and Y , denoted by Cov(X,Y ) by

Cov(X,Y ) = E[(X − µX)(Y − µY )]

where µX = E[X] and µY = E[Y ]. It’s easy to show that if our random variables are independent, then
their covariance is zero. and this results from the fact that E[XY ] = E[X]E[Y ] in the case of independent
random variables.

The important case of covariance is when we have vectors of random variables. Instead of dealing individual
random variables we can take a vector of random variables

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x1
⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Then we define the covariance of X by taking the matrix of cross-covariances of each random variable in the
vector. We see that

Cov(x1, x1) = E[(x1 − µ1)
2
] = V ar(x1).

and this remains true for any diagonal entry. For cross terms we see that
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Cov(x1, x2) = E[(x1 − µ1)(x2 − µ2)]

= E[x1x2] − µ1µ2

= Cov(x2, x1)

and thus we find that this matrix is symmetric. We see that the full covariance matrix is given by

Cov(X) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V ar(x1) Cov(x1, x2) . . . Cov(x1, xn)
Cov(x2, x1) V ar(x2) . . . Cov(x2, xn)

⋮ ⋮ ⋱ ⋮

Cov(xn, x1) Cov(xn, x2) . . . V ar(xn)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Related to covariance, is the correlation between random variables, which is defined by

Corr[x, y] ≜
Cov(x, y)

√
V ar(x) ⋅ V ar(y)

.

An intuitive idea we can get about correlation is how related two variables are: if the correlation is zero
then the variables are uncorrelated. If on the other hand the correlation is 1, then the relationship between
random variables is linear.

1.2 The Multivariate Gaussian

Here we introduce the multivariate Gaussian distribution:

N(µ,Σ) =
1

(2π)D/2∣Σ∣1/2
exp [−

1

2
(x −µ)

T Σ−1(x −µ)]

where µ = E[x] ∈ RD and Σ = σ2ID cov[x]. Here we note that the covariance in this case is a matrix where
Σ−1 is the matrix inverse, and ∣Σ∣ is the determinant of Σ. When the covariance is Σ = σ2ID, we have only
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one parameter along a diagonal matrix. We call this kind of covariance matrix an isotropic or spherical
covariance.

Recall that the covariance is symmetric and guaranteed to be positive semi-definite. In the case of the
multivariate Gaussian we require the covariance to be positive definite (otherwise matrix inversion would
be impossible, as well as having zero determinant in the denominator of the normalizing coefficient). There
is an important way to interpret covariances geometrically since they are related to quadratic surfaces. We
will illustrate this with an example. Let’s consider the quadratic form x2 + 4xy + y2. We can write this in
matrix form as

x2 + 4xy + y2 = [ x y ] [
1 2
2 1

] [
x
y

] = x⃗TAx⃗.

Another example of this is given by the form 3x2 +7xy+6xz +y2 −z2 = 9. In this case we get a 3×3 example

[ x y z ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3 7/2 3
7/2 1 0
3 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x
y
z

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 9

which we can write as y⃗TBy⃗ = 9. In both of these cases we find that A and B are both symmetric, in which
we are guaranteed an orthonormal basis of eigenvectors. Therefore we can diagonalize the matrix A by an
orthogonal matrix P (recall that an orthogonal matrix is one satisfying P −1 = PT ), meaning that PTAP =D
where D is diagonal.

Definition 1 An n × n symmetric matrix A is called positive-definite if for all x⃗ ∈ Rn we have x⃗TAx⃗ ≥ 0
with equality holding if and only if x⃗ = 0.

It is a fact of linear algebra (which we encourage you to prove on your own) that A is positive definite, which
we write as A ⪰ 0 if and only if all of the eigenvalues of A are positive. Note that if A is positive-definite,
we can take the square-root of the matrix D given by

√
D, the matrix where each diagonal entry is the

square-root of the corresponding entry in D. We can rewrite the matrix A as

A = PDPT
= P

√
D

√
DPT

= P
√
DPTP

√
DPT

= GG

where we define G = P
√
DPT . Note that G is symmetric so we can write this decomposition as A = GTG.

Now in the inner product we have that

x⃗TAx⃗ = x⃗TGTGx⃗ = (Gx⃗)T (Gx⃗).

Now , if we let y⃗ = Gx⃗ we can reduce our matrix inner product as

x⃗TAx⃗ = y⃗T y⃗ = ∣∣y⃗∣∣2 ≥ 0

where ∣∣y⃗∣∣ = 0 if and only if y⃗ is the zero vector. We can see then that x⃗TAx⃗ is zero if and only if y⃗ = Gx⃗ = 0
if and only if x⃗ = 0 since we have that G is invertible (recall that all of the entries in D and hence

√
D are

positive). Another way of seeing these relationships is by simply writing y⃗ = PT x⃗, thus we see

x⃗TAx⃗ = x⃗TPDPT x⃗ = y⃗TDy⃗ =
n

∑
i=1

λiy
2
i

where the λi are the eigenvalues of A, contained as the diagonal entries in D, and the yi are the entries in
the vector y⃗.

If we come back to our example of the quadratic surface in three dimensions, this hints at the idea that we
can transform our coordinates to an orthonormal frame in which our quadratic form is simplified. We can
for instance take our 3 × 3 example above and write λ1y

2
1 + λ2y

2
2 + λ3y

2
3 = 9. We can rewrite this equation as
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(
y1

3/
√
λ1

)

2

+ (
y2

3/
√
λ2

)

2

+ (
y3

3/
√
λ3

)

2

= 1

which is the equation for an ellipsoid. What we conclude from this is the following generalization: symmetric
positive-definite matrices can be interpreted, via quadratic forms, as ellipsoids of various sizes,
shapes, and dimensions. The eigenvectors of the matrix correspond to the principle directions
of the ellipsoid with the eigenvalues indicating how much the ellipsoid extends or “stretches”
in that direction. Note that while this method generalizes to any number of dimensions, we are only able
to visualize the 2 and 3-dimensional cases.

How can we bring this knowledge of positive-definite covariance matrices back to multivariate Gaussian
distributions?

In general we can think of positive-definite matricesA as inducing a quadratic surface q(x⃗) = x⃗TAx⃗. We can
see then that the Gaussian distribution as taking the exponential of this surface N(µ,Σ) ∼ exp (− 1

2
q(x⃗ −µ)).

In the two-dimensional case we can see this rather easily: since the matrix Σ is assumed symmetric positive-
definite, we automatically have that it’s inverse Σ−1 is as well (the inverse of the covariance is known as the
precision matrix). We see that the graph of the Gaussian takes an ellipsoid and maps it as a bump in R3

with it’s peak occuring when x⃗ = µ.

1.3 Relationship With Inner Products and Tensors

If we look at the function e−∣∣x−y∣∣
2

as a special case of the Gaussian distribution, where we see that the
function peaks when x is very close to y. By noting that the exponent is actually the Euclidean product
∣∣x− y∣∣2 = ⟨x− y, x− y⟩. We’re however not constrained to the Euclidean dot product, but can in fact change
how we take our inner product.

Definition 2 A tensor is a multi-linear map T ∶ Rn × . . . × Rn → R where there are k copies of Rn where
the function T is linear in each of it’s entries.
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We see that the Euclidean dot product ⟨⋅, ⋅⟩ is an example of a 2-tensor since it is a multi-linear map (note
in the case of the complex Euclidean dot product we don’t exactly have linearity because of the conjugate-
symmetry on the second term). The inner product is in fact a symmetric bilinear form.

Let’s explore why tensors are powerful tools. Let’s take two vectors v⃗, w⃗ ∈ R2. Let {u⃗1, u⃗2} be any basis of
R2. We can then write our vectors as

v⃗ = a11u⃗1 + a12u⃗2

w⃗ = a21u⃗1 + a22u⃗2.

An inner product is any symmetric, bilinear, positive-definite form ⟨⋅, ⋅⟩ ∶ R2 ×R2 → R, where the positive-
definiteness means that ⟨x⃗, x⃗⟩ ≥ 0 and equality holds if and only if x⃗ = 0. The power behind the inner product
is that in using our example vectors above, we have that

⟨v⃗, w⃗⟩ = ⟨a11u⃗1 + a12u⃗2, a21u⃗1 + a22u⃗2⟩

= a11⟨u⃗1, a21u⃗1 + a22u⃗2⟩ + a12⟨u⃗2, a21u⃗1 + a22u⃗2⟩

= a11a21⟨u⃗1, u⃗1⟩ + a11a22⟨u⃗1, u⃗2⟩ + a12a21⟨u⃗2, u⃗1⟩ + a12a22⟨u⃗2, u⃗2⟩

= [ a11 a12 ] [
⟨u⃗1, u⃗1⟩ ⟨u⃗1, u⃗2⟩
⟨u⃗2, u⃗1⟩ ⟨u⃗2, u⃗2⟩

] [
a21
a22

] .

What we discern from this is that we can understand the entire inner product on any two vectors by simply
specifying a basis for the space on which the tensor acts, and compute the cross-inner products on the basis
elements. We can therefore compute the inner product on any two vectors in the space by representing them
in the given basis and performing the indicated matrix multiplication given above. We see in the 2× 2 case,
we can determine the rule for the inner product simply by computing 3 inner products. In the case of an

n×n matrix, we need only compute n(n+1)
2

of these inner products. It is quite easy to tell immediately if the
form is symmetric from it’s matrix representation, but how do we determine whether it is positive-definite?
The most direct method is to compute it’s eigenvalues, which is a standard task for any computer given that
the size n of the matrix is of reasonable size.
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Coming back to the Gaussian distribution we have that the argument of the exponent is given by (x⃗ −
µ)T Σ−1(x⃗ −µ), and so this indicates a symmetric positive definite bilinear form, where the rule for for the
form is given by the inverse of the covariance matrix. This metric given by the inverse of the covariance is
known as the Mahalanobis metric.

7


