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1 Linear Systems and Matrix Representation

What is the big picture of linear algebra? When we solve a linear system, for example

x + 2y = 1

3x + 4y = −1

we want to represent this system in the simplest way possible. If we write this as a matrix equation we get

[ 1 2
3 4

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

[ x
y

]

²
x

= [ 1
−1

]

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
y

so we can write this as Ax = y. The way we traditionally solve an equation like this is by diagonalizing
the matrix A using elementary row operations. We can multiply the top row by 3 and subtract it from the
second row to obtain

[ 1 2
0 −2

] [ x
y

] = [ 1
−4

] .

We can encode this operation into a matrix by using the elementary matrix

E1 = [ 1 0
−3 1

]

and thecomputation above is identical to

[ 1 0
−3 1

] [ 1 2
3 4

] [ x
y

] = [ 1 0
−3 1

] [ 1
−1

] .

The matrix E1A is upper triangular. A theorem shows that the inverse of each elementary matrix is again
an elementary matrix. We can easily find that

E−1
1 = [ 1 0

3 1
]

and it can be easily verified that E−1
1 E1 = E1E

−1
1 = I where I is the identity matrix. Observe that E1 and

E−1
1 are both lower triangular. Observe now that since

E1A = [ 1 2
0 −2

]

we have that
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A = [ 1 0
3 1

] [ 1 2
0 −2

] = LU

and therefore A can be decomposed into a lower triangular matrix multiplied on the right by an upper
triangular matrix. We can actually find a unique decomposition of this form for A where the upper triangular
matrix has ones along the diagonal. Another elementary row operation we find to make the upper triangular
have units along the diagonal is the matrix

E2 = [ 1 0
0 − 1

2

] .

and therefore we find

E2BA = [ 1 0
0 − 1

2

] [ 1 2
0 −2

] = [ 1 2
0 1

] = Ũ

and since

(E2E1)−1 = E−1
1 E−1

2 = [ 1 0
3 1

] [ 1 0
0 −2

] = [ 1 0
3 −2

] = L̃

then A has a unique decomposition A = L̃Ũ . This is called the Cholesky decomposition.

Recall that a matrix A is symmetric if A = AT . We say that a symmetric matrix is positive-definite if
all of the eigenvalues of A are strictly positive. A symmetric positive-definite matrix A has a (non-unique)
decomposition as A =MTM . Question: is the matrix M invertible? One way we can tell is by is by taking
the determinant of both sides of this equation. We know that since detA > 0 we have that

0 < detA = det(MTM) = det(MT )det(M) = (detM)2.

and therefore detM ≠ 0 and M is invertible. How can we prove that A has this form?

Proof : We know that A = L̃Ũ is a unique Cholesky decomposition. Note however that since AT = A we
have

A = AT = ŨT L̃T .

by the uniqueness we must have that ŨT L̃T = L̃Ũ and therefore ŨT = L̃. and therefore we can write
A = ŨT Ũ . ◻

1.1 Rank and Determinant

It is important to have useful characteristics that are easy to compute for matrices. The first two that we look
at are the determinant and rank of a matrix. The determinant of a matrix immediately gives information
about the invertibility of a matrix. We can think of the determinant of a matrix geometrically in terms of a
parallelpiped. The determinant of a matrix gives the (oriented) volume of the parallelpiped formed by the
columns of the matrix. We can immediately see that if the determinant is zero, then some of the columns
are linearly dependent.

1.2 Vector Spaces

When we discuss vector spaces we can “mimic” Rn. Concepts that we can asbtractly define based on our
notions of Rn are subspaces, linear span, linear dependence/independence, basis and dimension.
We can define vector spaces in the following way.

Definition 1 A real vector space V is a collection of elements called vectors such that for any two vectors
u, v ∈ V we have u + v ∈ V and for any scalar a ∈ R we have av ∈ V .

2



The abstract notion of a vector space allows us to discuss a broader range of examples than simpy Rn.
For instance, the collection P2(x) of all polynomials of degree at most 2 is a vector space. The set of all
functions is also a vector space. Unlike Rn, the collection of all functions with the same domain and codomain
is infinite-dimensional.

1.3 Linear Transformations

The key to linear algebra is the concept of linearity. The reason why linearity is so powerful is that a linear
transformation allows us to understand an infinite amount of information with only finitely many parameters.
Tensors are an extension linear transformations which play an important role in data analysis.

Definition 2 Given two vector spaces V and W , a linear transformation or linear map is a mapping
L ∶ V →W such that for all u,w ∈ V and for all k ∈ R we have

L(u +w) = L(u) +L(w)
L(ku) = kL(u).

For every linear transformation there is an associated matrix representation which we can define as follows.
Given vectors spaces V and W with linear map L ∶ V →W , we can define a basis v1, . . . , vn of V . Given a
vector w = a1v1 + . . . + anvn we have that

L(w) = L(a1v1 + . . . + anvn)
= a1L(v1) + . . . + anL(vn)

= [ L(v1) . . . L(vn) ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

matrix representation

⎡⎢⎢⎢⎢⎢⎣

a1
⋮
an

⎤⎥⎥⎥⎥⎥⎦
.

The kernel of a linear map is the set of all elements v ∈ V such that L(v) = 0 ∈W and is a subspace of V .
The range of L is the image L(V ) ⊆W . The range-nullity theorem guarantees that

dim ker(L) + dim range(L) = dimV.

We know this since if dimV = n, dimW =m, then if the rank of the matrix representation of L is k we know
that dim kerL = n − k and dim rangeL = k.

2 Convex Optimization

Definition 3 A convex combination of two vectors x and y in a vector space V is a vector θx + (1 − θ)y
where 0 ≤ θ ≤ 1. A convex set is a subset A ⊆ V such that for all x, y ∈ A the convex combination
θx + (1 − θ)y ∈ A for all θ ∈ [0,1].

Some examples of convex sets include the collection of all Hermitian matrices H such that H∗ = H where

H∗ = HT
and the overbar denotes complex conjugation. Another nontrivial convex set is the collection of

probability distributions on Rn. We can think of this as the set

P(Rn) = {P(x) ∣ ∫
Rn

P(x)dx = 1 , andP(x)} .

Given f, g ∈ P(Rn) and θ ∈ [0,1] we have

∫
Rn

(θf + (1 − θ)g)dx = θ∫ fdx + (1 − θ)∫ gdx = θ + (1 − θ) = 1.

We also have that θf(x) + (1 − θ)g(x) ≥ 0. For example, we can take f(x) = ex
T x = ex

2
1+...+x

2
n . Taking the

partial derivatives of this, we can show that the Hessian ∇2f will be positive definite. Observe that
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∂2f

∂xi∂xj
= ∂f

∂xi
2xje

xT x

= 4xixje
xT x

and we obtain that ∇2f = 4xxT ex
T x. We can show this is positive-definite by taking any arbitrary z ∈ Rn

and observing that

zT∇2fz = 4ex
T x(zTx)(xT z) = 4(zTx)2ex

T x ≥ 0.

It so turns out that the only multivariable functions that are convex are the ones that have positive semi-
definite Hessians.

Theorem 1 A function f ∶ Rn → R is convex if and only if the Hessian ∇2f is positive semi-definite.

Theorem 2 Given f ∶ Rn → R which is convex and an arbitrary matrix A on Rn, we also have that f(Ax+b)
is convex.

We can use convexity for optimization problems. Given a function f0(x) subject to the constraints fi(x) < 0
and hj(x) = 0, we say that a point x∗ is optimal if there exists R > 0 such that ∣∣x∗ − x∣∣ < R. Oftentimes
we want to minimize f(x) such that fi(x) ≤ 0 and Ax = 0 with both f and fi convex, then we say that this
problem is a convex optimization problem.

Theorem 3 Given a convex problem and a local optimum x∗ such that

f0(x∗) = inf{f0(z) ∣ z is reasonable and ∣∣z − x∣∣2 ≤ R}

then x∗ is the global optimum.

The most basic type of convex optimization problem is a linear program where we want to minimize the
function f(x) = cTx for some vector c subject to Ax = 0 and Gx ≤ h. Another type is a quadratic program.
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