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To the Reader: If you want a brief and very comprehensive reference/resource of anything Linear Algebra
related (including a ton of matrix derivatives at the beginning) check out the Matrix Cookbook 2. It has
over 800 citations in the literature!

1 Basics

Linear Algebra allows us to interact with linear operators (or systems of linear equations) in a more powerful
manner than dealing with equations. For example, consider the linear system

x1 + 2x2 = 5

3x1 + 4x2 = 1.

This can be solved for x1 and x2 using substitution, but it is convenient (for many reasons) to investigate
this system more compactly, as a matrix-vector product. Namely,

Ax = b

where

A =

[
1 2
3 4

]
and b =

[
5
1

]
.

Here, A is a matrix and b is a vector. Matrices are linear operators. That is, they obey the following
property, where A is a matrix in Rm×n

, x and y are vectors in Rn
, and c and d are scalars:

A(cx + dy) = cAx + dAy.

Note that this implies that
A0 = 0.

1.1 Notation

- We denote an m× n matrix of real numbers A as A ∈ Rm×n
(“A is in R m by n”). Similarly, to declare a

m× n matrix of complex numbers we say B ∈ Cm×n
.

- We denote a vector x with n real elements as x ∈ Rn
. By convention, x is assumed to be a column

vector (that is, equivalently, x ∈ Rn×1
). If we want to represent a row vector, we use x>, where > is the

transpose.

- The i−th element of a vector x is denoted xi.

- We denote the i, j-th element of a matrix A as aij , Aij , or Ai,j .

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


- We denote the j−th column of A as A:,j .

- We denote the i−th row of A as Ai,:.

- 1 is the vector of all ones. 0 is the vector of all zeroes. Size is dependent on context.

2https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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2 Matrix Multiplication

From the intro section we have already seen a matrix-vector product Ax. We will now define vector-vector
products (the inner and outer product) and matrix-matrix products (which encapsulate matrix-vector prod-
ucts).

The product of two matrices A ∈ Rm×n
and B ∈ Rn×p

is the matrix

C = AB ∈ Rm×p

where

Cij =

n∑
k=1

AikBkj .

2.1 Vector-Vector Products

Let x,y ∈ Rn
. Then the inner product (sometimes referred as the dot product but we won’t use that

terminology)

〈x,y〉 = x>y =

n∑
i=1

xiyi = ||x||2||y||2 cos θ

where θ is the angle between the vectors. Note that 〈·, ·〉 : (V, V ) 7→ R (“〈·, ·〉 maps two elements of the
vector space V to R”) here is the standard definition of the inner product for the vector space V = Rn

. As
we will see later in the class, other inner products can be defined between vectors in Rn

.

The outer product between x ∈ Rm
and y ∈ Rn

as

xy> ∈ Rm×n
,

a matrix.
(xy>)ij = xiyj .

This will be useful when we talk about Principal Component Analysis and Covariance.

2.2 Matrix-Vector Products

The matrix-vector product between A ∈ Rm×n
and x ∈ Rn

is the vector y = Ax ∈ Rm
. We can see from

the formula for matrix-matrix multiplication that

Ax =

 | | |
a1 a2 . . . an
| | |



x1
x2
. . .
xn

 = x1

 |a1
|

+ x2

 |a2
|

+ · · ·+ xn

 |xn
|

 ,
a linear combination of the columns of A!

2.3 Matrix-Matrix Multiplication

Armed with this knowledge, we can see matrix-matrix multiplication between A ∈ Rm×n
and B ∈ Rn×p

as

AB =

 | | |
a1 a2 . . . an
| | |




bT1
bT2
...
bTn

 =

n∑
i=1

aib
>
i =


a>i b1 a>2 b2 . . . a>1 bp
a>2 b1 a>2 b2i . . . a>2 bp

...
...

. . .
...

a>mb1 a>mb2 . . . a>mbp

 ,
either an arrangement of every possible inner product between the rows of A and the columns of B, or a
sum of outer products between the columns of A and the rows of B.
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2.4 Properties of Matrix Multiplication

- Matrix multiplication is associative: (AB)C = A(BC)

- Matrix multiplication is distributive: A(B + C) = AB +AC

- Matrix multiplication is not commutative in general : AB 6= BA (in the vast majority of cases).

3 Operations and Properties

Most of this should hopefully be review, but if you haven’t seen complex matrix operations before don’t
worry we won’t use them much.

3.1 The Identity Matrix and Diagonal Matrices

The identity matrix, denoted I ∈ Rn×n
, is a square matrix with ones on the diagonal and zeros everywhere

else:

Iij =

{
1 if i = j

0 otherwise.

For any A ∈ Rm×n
,

AI = A = IA.

Intuitively, this means that as an operator the identity matrix maps every vector to itself.

A diagonal matrix is a matrix where all non-diagonal elements are 0. This is denoted D = diag(d1, d2, . . . , dn)
where

Dij =

{
di if i = j

0 otherwise.

3.2 The Transpose: A>

The transpose of a matrix is where every row becomes a column. Given A ∈ Rm×n
, the transpose of A,

A> ∈ Rn×m
is defined as

(A>)ij = Aji.

Here are some helpful properties (proofs are easily verifiable):

- (A>)> = A

- (AB)> = B>A>

- (A+B)> = A> +B>

3.3 Symmetric Matrices

A matrix S ∈ Rn×n
is symmetric if and only if S = S>. For any A ∈ Rn×n

, A + A> and A>A are both
symmetric. This is easily verified from the above properties. We denote the set of symmetric matrices in
Rn×n

as Sn
. As we will see, symmetric matrices are often nice to work with.

3.4 The Conjugate Transpose: A∗

For complex matrices A ∈ Cm×n
, the conjugate transpose of A, said “A Hermitian” is denoted as A∗ = A>.

That is,
(A∗)ij = Aji.

For example, [
1 + 2i 3i

1 2− i

]∗
=

[
1− 2i 1
−3i 2 + i

]
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3.5 Hermitian Matrices

A matrix is Hermitian if A = A∗. This is a generalization of symmetric matrices from real to complex
matrices.

3.6 The Trace tr(A)

The trace of a square matrix A ∈ Rn×n
is the sum of the diagonal elements:

trA = tr(A) =

n∑
i=1

Aii.

Here are some useful properties:

- For A ∈ Rn×n
, trA = trA>

- For A,B ∈ Rn×n
, tr(A+B) = trA+ trB

- For A,B such that AB is square, trAB = trBA

- For A,B,C such that ABC is square, trABC = trBCA = trCAB, and this can be extended to more
matrices.

(from CS229) Here’s a proof of the fourth property:

trAB =

m∑
i=1

(AB)ii

=

m∑
i=1

∑
j=1

AijBij

=

n∑
j=1

m∑
i=1

BijAij =

n∑
j=1

(BA)ii

= trBA,

as desired.
A very useful property is that the trace of a matrix is the sum of the eigenvalues of that matrix, as we will
see.

3.7 Norms

A norm of a vector ||x|| is to an approximation a measure of length of x. We define the `− p norm as

||x||p =

(
n∑

i=1

xpi

)1/p

.

The distance between a two vectors is in an `− p space is ||x− y||p. Euclidean distance, ||x− y||2 is what
we normally consider as ‘distance’.
There are really 4 cases of the `− p norm that we might encounter:

- ||x||0 =(the number of non-zero elements of x)

- ||x||1 =
∑
|xi|. We call ||x − y||1 the Manhatten Distance between x and y because it treats walking

between coordinates in Rn
as walking on perpendicular streets. This is opposed to Euclidean Distance

where you can walk in a strait line from point to point.

- ||x||2 =
√∑

xi is the Euclidean Norm. This is what we normally consider as the ‘length’ of a vector.
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- ||x||∞ = maxi |xi|.

We will encounter ` − p norms a lot in our studies. Specifically, we can improve the robustness of many
algorithms to outliers by constraining the norm of some parameter in our optimization. Infinitely many
other norms can be defined, however. A norm is any function f : Rn 7→ R that satisfies 4 properties:

1. For all x ∈ Rn
, f(x) ≥ 0 (non-negativity)

2. f(x) = 0 if and only if x = 0 (definiteness)

3. For all x ∈ Rn
and t ∈ R, f(tx) = |t|f(x) (homogeneity)

4. For all x,y ∈ Rn
, f(x + y) ≤ f(x) + f(y) (triangle inequality)

Norms can be extended to matrices too, as we will encounter. Here are a few, where A ∈ Rm×n
:

1. ||A||F =
√∑m

i=1

∑n
j=1A

2
ij =

√
tr(A>A) is the Frobenius Norm of A.

2. ||A||∗ = tr(
√
A∗A) =

∑min{m,n}
i=1 σi =(sum of the singular values of A) is the Nuclear Norm

3. ||A||max = maxij |Aij |

4. ||A||2 =
√
λmax(A∗A) = σmax(A) is the Spectral Norm.

3.8 Linear Independence, Span and Rank

A linear combination of the vectors x1,x2, . . . ,xn is a sum of scalar multiples of each of the vectors. That
is, for αi ∈ R,

α1x1 + α2x2 + · · ·+ αnxn

is a linear combination of those vectors, for any αi.

The span of a set of vectors X = {x1,x2, . . . ,xn} ⊂ Rm
is every possible linear combination of X:

span{x1,x2, . . . ,xn} = α1x1 + α2x2 + · · ·+ αnxn

for any α1, α2, . . . , αn ∈ R.

A set of vectors {x1,x2, . . . ,xn} ⊂ Rm
is linearly independent if no vector can be represented as a linear

combination of the others. If some

xi ∈ span{x1,x2, . . . ,xi−1,xi+1, . . . ,xn},

the vectors are said to be linearly dependent. As an example, the vectors

x1 =

1
1
1

 x2 =

1
2
3

 x3 =

0
1
2


are linearly dependent because x3 = x2 − x1.

The rank of a matrix A ∈ Rm×n
is cardinality (size) of the largest set of columns in A that are linearly

independent (this is also called the column rank of A). Coincidentally, this is also the cardinality of the
largest set of rows of A that are linearly independent (this is also called the row rank of A). Here are some
helpful properties of rank:

1. For A ∈ Rm×n
, rank(A) ≤ min(m,n). If rank(A) = min(m,n), then A is said to be full rank.

2. For A ∈ Rm×n
, rank(A) = rank(A>).

3. For A ∈ Rm×n
, B ∈ Rn×p

, rank(AB) ≤ min(rank(A), rank(B)).

4. For A,B ∈ Rm×n
, rank(A+B) ≤ rank(A) + rank(B).
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3.9 The Inverse A−1

The inverse of a matrix A ∈ Rn×n
, denoted A−1, is the unique matrix such that

A−1A = I = AA−1.

If we think of A as a linear map from vectors V in Rn
to different vectors W in Rn

such that A : V 7→ W ,
the inverse A−1 is the linear map (matrix) that maps vectors in W back to V such that A−1 : W 7→ V .
Then AA−1 : V 7→W 7→ V = I. Note that this is an abuse of notation because V = W and the 7→ does not
imply a bijective mapping, but nevertheless it should convey the idea more intuitively.

Using this intuition, it should be clear that a matrix A ∈ Rm×n
, which maps A : Rn 7→ Rm

can not be
invertible if m 6= n because (without loss of generality suppose m < n) then you are effectively ‘losing
information’ by projecting all of Rn

into a smaller space which you cannot recover.

To that end, a matrix A ∈ Rn×n
is invertible if and only if rank(A) = n. A matrix that is non-invertible is

called singular. Here are some helpful properties:

1. (A−1)−1 = A

2. (AB)−1 = B−1A−1

3. (A−1)> = (A>)−1. We often denote (A−1)> as A−> because of this fact.

Given a linear system Ax = b, if A is invertible we can multiply on the left by A−1, giving

A−1Ax = Ix = x = A−1b,

a closed form for x. For the love of all that is holy, however, please do not solve systems numerically by
calculating the inverse of any matrices! 3 Computing the inverse in general has numerical precision issues
when done on a computer.

3.10 Orthogonal Matrices

Two vectors x,x ∈ Rn
are orthogonal if x>y = 0. A vector x is normalized (that is, x is a unit vector) if

||x||2 = 1. A square matrix Q ∈ Rn×n
is orthogonal if all of it’s columns are orthogonal to each other and

are normalized (in this case, we say that the collection of column vectors are orthonormal). Thus for any
orthogonal Q,

Q>Q = I = QQ>,

so Q−1 = Q>. We have another nice property as well, where for any vector x ∈ Rn
and orthogonal

Q ∈ Rn×n
,

||Qx||2 = ||x||2
directly from the linear-combination-of-columns definition of matrix-vector multiplication.

3.11 Unitary Matrices

Just like Hermitian matrices extend symmetry to complex matrices, a unitary matrix U ∈ Cn×n
has columns

{u1,u2, . . . ,un} such that

u>i uj =

{
1 if i = j

0 otherwise

Similarly, for any unitary U , U−1 = U∗.

3at the very least instead of A−1b (pinv(A)*b Matlab or Julia) use A \ b (A\b in Matlab or Julia).
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3.12 Columnspace and Nullspace of a Matrix

Given A ∈ Rm×n
, the columnspace (sometimes called the range) of A is

col(A) =
{
Ax : x ∈ Rn} ⊆ Rm

= span{A:,1, . . . , A:,n}.

This can be thought of as the output of the linear operator the matrix represents, given any possible input.
If A is square and has full rank, then col(A) = Rn

.

The nullspace of A is the set
null(A) =

{
x : Ax = 0, x ∈ Rn}

.

interestingly enough, the Rank-Nullity Theorem states that

dim(null(A)) + dim(col(A)) = n.

3.13 Projections

Suppose, given a matrix A ∈ Rm×n
and a vector y ∈ Rn

, we want to find the closest vector x ∈ Rn
within

the columnspace of A. That is,

projAy = Py = x = arg min
x∈col(A)

||x− y||2.

This is the projection of y onto A. The matrix P that projects any input vector onto the columnspace of A.
It can be shown that

P = A(A>A)−1A>.

As we will see this looks awfully familiar to the least-squares closed-form solution (and for good reason)!

3.14 The Determinant

The determinant of a square matrix A ∈ Rn×n
is a function det : Rn×n 7→ R often denoted |A|. Geometri-

cally, it corresponds to the area of the parallelogram (or parallelotope in n dimensions) given by the columns
of A. For example, the matrix

A =

[
a c
b d

]
has determinant |A| = ad− cb (take this as a definition for the 2×2 case). Visually we can see the following:

j

i

[
a
b

]
[
c
d

]
|A|

Algebraically, we define the (i, j) minor of A, A\i,\j as the matrix resulting from removing row i and column
j from A. Then the determinant becomes

|A| =
n∑

i=1

(−1)i+j |A\i,\j |(for any j ∈ 1, . . . , n)

=

n∑
j=1

(−1)i+j |A\i,\j |(for any i ∈ 1, . . . , n)

8



The abjoint of A ∈ Rn×n
is

adj(A)ij = (−1)i+j |A\i,\j |

(note the switch of indices A\i,\j). It can be shown that if A is invertible then

A−1 =
1

|A|
adj(A).

Never use this to compute the inverse, though, because computing the determinant takes n! time.

Here are some nice properties of the determinant:

1. |A| = 0 if and only if A is singular.

2. |A| = |A>|

3. |AB| = |A||B| if A,B ∈ Rn×n

4. if A is invertible |A−1| = 1/|A|.

3.15 Quadratic Forms and Positive Semidefinite Matrices

This is a pretty important concept to know about. Given a square matrix A ∈ Rn×n
and a vector x ∈ Rn

,
the scalar x>Ax is called a quadratic form. We have the following definitions (where we always assume
x 6= 0):

(a) A symmetric matrix A ∈ Sn
is positive definite if for any x ∈ Rn

, x>Ax > 0. This is written A � 0,
and the set of positive definite matrices is usually denoted Sn

++.

(b) A symmetric matrix A ∈ Sn
is positive semidefinite if for any x ∈ Rn

, x>Ax ≥ 0. This is written
A � 0, and the set of positive semidefinite matrices is usually denoted Sn

+.

(c) A symmetric matrix A ∈ Sn
is negative definite if for any x ∈ Rn

, x>Ax < 0. This is written A ≺ 0.

(d) A symmetric matrix A ∈ Sn
is negative semidefinite if for any x ∈ Rn

, x>Ax ≤ 0. This is written
A � 0.

We will see eigenvalues later, but x>Ax > 0 iff all λi > 0, and x>Ax ≥ 0 iff all λi ≥ 0, etc.

The matrix A>A is always positive semidefinite. if A is full rank, A>A is always positive definite.

3.16 Eigenvalues and Eigenvectors: Ax = λx

Given A ∈ Rn×n
we say λ ∈ C is an eigenvalue of A and x ∈ Cn

is a corresponding eigenvector of A if

Ax = λx, x 6= 0.

This implies that

Ax = λIx

(A− λI)x = 0, so

det(A− λI) = 0.

This is a useful method to compute eigenvalues by hand, though it is not the method used in Matlab, for
example, because (for one) computing the determinant takes n! time. We call det(A−λI) the characteristic
polynomial of A. Here are some nice properties of eigenvalues:

1. tr(A) =
∑n

i=1 λi

2. |A| =
∏n

i=1 λi

9



3. rank(A) =(the number of non-zero eigenvalues of A)

4. If A is invertible then 1/λi is an eigenvalue of A−1 with the same corresponding eigenvector as A

5. The eigenvalues of a diagonal matrix D = diag(d1, . . . , dn) are just the diagonal entries d1, . . . , dn.

We can write all eigenvector equations simultaneously as

AX = XΛ,

so if we have n linearly independent eigenvectors creating X, X is invertible, and right-multiplying by X−1

we find
A = XΛX−1.

This is called the eigendecomposition of A, and if possible A is called diagonalizable. This is the first
decomposition we will encounter, but we will see more soon.

3.17 Eigenvalues and Eigenvectors of Symmetric Matrices

Given A ∈ Sn
it can be shown that all eigenvalues of A are real and all corresponding eigenvectors are

orthonormal. Using this, we can show that the definiteness of a matrix can be determined only from its
eigenvalues. Suppose A ∈ Sn

= QΛQ>. Then

x>Ax = x>QΛQ>x = y>Λy =

n∑
i=1

λiy
2
i .

Thus if all λi > 0, x>Ax > 0. This is trivially extended to negative semidefiniteness, etc.

4 Matrix Factorizations

We have already seen the eigendecomposition of a matrix A, but this is not always available (we require n
linearly independent eigenvectors). This decomposition helped us connect eigenvalues to definiteness. We
will see that there are other helpful decompositions that apply to different (or all!) classes of matrices.

4.1 Eigendecomposition: A = XΛX−1

To recap, if a matrix A ∈ Rn×n
has n linearly independent eigenvectors then we can construct (and show)

that
A = XΛX−1

where X =
[
x1 x2 . . . xn

]
are the n eigenvalues of A and Λ = diag(λ1, λ2, . . . , λn) are the eigenvalues

corresponding to xi. If A is symmetric, this becomes

A = QΛQ>.

4.2 Cholesky Decomposition: A = LL>

This is probably the most useful decomposition we will encounter in terms of our specific studies.

The Cholesky Decomposition follows from the eigendecomposition. Suppose A ∈ Sn
is positive definite. Then

all eigenvalues of A are positive, and we can take their square roots. Factor A into its eigendecomposition:

A = QΛQ>.

Denote Λ1/2 as the element wise square-root of Λ and note that Λ1/2
(
Λ1/2

)>
= Λ. Then we can see that

A = QΛ1/2(Λ1/2)>Q> = QΛ1/2
(
QΛ1/2

)>
= LL>.

10



This factorization A = LL> is called the Cholesky Decomposition. Note that if A is positive semidefinite
then there still exists such a decomposition but L is not unique anymore.

Why is this so useful? Consider we are given A = LL> and the system

Ax = b

we wish to solve. Then
LL>x = b,

and
x = L−TL−1b = L>\L\b.

If we were given this in Julia or Matlab we would write

L = chol(A) # if A > 0

x = L’\(L\b)

This is roughly twice as fast as standard A\ b so if you have a positive definite matrix (eg. when working
with kernels) use this as the first option.

4.3 Singular Value Decomposition: A = UΣV ∗

Given any matrix A ∈ Cm×n
(which includes the real case) it can be shown that we can factorize this matrix

into
A = UΣV ∗

where U ∈ Cm×m
and V ∈ Cn×n

are unitary and Σ ∈ Cm×n
= diag(σ1, σ2, . . . , σmin(m,n)) is diagonal. We

won’t delve into computing the decomposition by hand but it can be seen easily by forming AA∗ and A∗A
with the above definition and computing two eigendecompositions.

Here are just a few of the use cases of the SVD (Singular Value Decomposition):

1. We will see the Moore-Penrose Pseudoinverse in our class: for any tall A of full rank, the Moore-Penrose
Pseudoinverse (a generalization of the regular inverse, pinv(A) in Julia/Matlab) is A+ = (A>A)−1AT

which becomes A+ = (A∗A)−1A∗ for complex A. We can compute the pseudoinverse as A+ = V Σ+U>,
where Σ+ is found by taking the reciprocal of all entries and transposing that matrix.

2. Say we want a rank k approximation to any A ∈ Rm×n
:

arg min ||A− Ã||F .

This can be generated by taking the SVD of A and setting all σi : i > k to zero. The special case of
k = 1, giving an approximation A ≈ xy> can be constructed from SVD to have x,y � 0, a special
case of non-negative matrix factorization we will see later in the context of recommender systems.

5 Matrix Calculus

Most of you probably haven’t been taught all of this yet. That’s okay. Matrix calculus is, above all, is just
a way to make notation much simpler when dealing with linear operations. Most of this should be very
reminiscent of single variable calculus.
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5.1 The Gradient: ∇f
Suppose we are given f : Rm×n 7→ R, a function taking in a matrix A ∈ Rm×n

and mapping that to a
real number (one example might be the determinant). The gradient of f with respect to A is the matrix of
partial derivatives

∇Af = ∇f =


∂f

∂A11

∂f
∂A12

. . . ∂f
∂A1n

∂f
∂A21

∂f
∂A22

. . . ∂f
∂A2n

...
...

. . .
...

∂f
∂Am1

∂f
∂Am2

. . . ∂f
∂Amn

 ∈ Rm×n

That is,

(∇f)ij =
∂f

∂Aij
.

note that dimensionality is preserved (A,∇f(A) ∈ Rm×n
). Therefore, if A is a vector x ∈ Rn

we have

∇xf = ∇f =


∂f
∂x1
∂f
∂x2

. . .
∂f
∂xn


5.2 The Hessian: ∇2f

Suppose we are given a function f : Rn 7→ R which takes a vector x ∈ Rn
and outputs a scalar. The Hessian

matrix with respect to x, written ∇2f or H, is the n× n matrix of partial derivatives(
∇2

xf
)
ij

=
(
∇2f

)
ij

=
∂2f

∂xi∂xj
.

By the definition this implies that ∇2f is symmetric.

The Hessian is a natural generalization of the single-variable idea of a second derivative to multiple variables.

5.2.1 Convexity

If we are given a function f : R 7→ R, we know this function is convex (concave up is commonly used but
don’t say that) if the second derivative f ′′ ≥ 0 for all x, and concave if f ′′ ≤ 0 for all x. Linear functions,
with f ′′ = 0 for all x are both concave and convex. We can see examples of such functions in Figure (1).
We will explore more concrete definitions of convexity in our studies as they are very important in machine
learning and optimization theory.

A natural generalization of this idea is to say a function f : Rn 7→ R is convex if ∇2f � 0 and f is concave
if ∇2f � 0. That is to say our generalized version of the second derivative is our generalized version of
positive. Similarly, if ∇2f � 0 for all inputs x then f is concave. This will come up a lot.

5.3 Gradients and Hessians of Quadratic and Linear Functions

These functions are relatively simple but we will use them a lot.
Suppose we have x,b ∈ Rn

and a function f(x) = b>x. Then

f(x) =

n∑
i=1

bixi,

and
∂f

∂xk
=

∂

∂xk

n∑
i=1

bixi = bk.
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Figure 1: An illustration of convex and concave functions, along with an example of a funciton which is
neither concave nor convex.

Thus the gradient ∇f = ∇b>x = b. In the single variable case we have the familiar d
dx (ax) = a. It follows

immediately because ∇2f = ∇(∇f)> that ∇2b>x = 0.

Suppose we have the quadratic function f(x) = x>Ax where A ∈ Sn
. Recall

f(x) =

n∑
i=1

n∑
j=1

Aijxixj .

There will be n terms with xk in them, so

∂f

∂xk
=

∂

∂xk

n∑
i=1

n∑
j=1

Aijxixj = 2

n∑
i=1

Akixi = 2Ak:x

Thus we have the gradient ∇f = ∇x>Ax = 2Ax. This should be reminiscent of the single variable case
d
dx (ax2) = 2ax. Now we look for the Hessian of the same quadratic f . Taking partials, it follows that

∂2f

∂xk∂xl
=

∂

∂xk

[
∂f

∂xl

]
=

∂

∂xk
2Ak:x = 2Akl.

Thus the Hessian ∇2f = ∇2x>Ax = 2A, which should be reminiscent of as single variable cave d2

dx2 (ax2) =
2a.

It should then be obvious, because scaling preserves convexity, that any quadratic function

f(x) = x>Ax + b>x + c

is convex if and only if A � 0 and concave if and only if A � 0. In the case that A = O (the null matrix
containing all zeroes) we have shown that a linear function f(x) = b>x + c is both concave and convex, just

13



as in the single variable case!

To recap:

f ∇f ∇2f
b>x b 0

x>Ax 2Ax 2A

Figure 2: Gradients and Hessians of very common functions involving linear operations.

5.3.1 Taylor Expansions: f(x) ≈ f(a) +∇f(a)>(x− a) + 1
2 (x− a)>∇2f(x− a)

You should already be familiar with Taylor’s Theorem for a single variable function f : R 7→ R, where, about
some point a

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + . . . .

We can extend this (without proof) to multiple variable functions f : Rn 7→ R up to a quadratic approxi-
mation (you would need to invoke tensors for higher orders: ew!) as

f(x) ≈ f(a) +∇f>(x− a) +
1

2
(x− a)>∇2f(x− a).

It follows immediately that if f is convex or concave, the quadratic Taylor approximation of f is simiarly
convex or concave, respectively. This will be usefull in the context of the Newton-Raphson method for convex
optimization.

5.4 Least Squares

Now let’s re-derive the closed form expression for fitting a line to data. Suppose we are given matrices
A ∈ Rm×n

(where A is full rank) and a vector b ∈ Rm
. We want to find a vector x ∈ Rn

such that Ax = b,
but b may be outside the columnspace of A (because A is tall). Therefore we try to find x so that we
minimize the `− 2 distance from Ax to b. That is,

minimize: f(x) = ||Ax− b||22 = (Ax− b)>(Ax− b) = x>A>Ax− 2b>Ax + b>b.

At the minimum (because this problem is unconstrained) ∇f = 0, so

∇
(
x>A>Ax− 2b>Ax + b>b

)
= 2A>Ax− 2A>b = 0,

so we see that
x = (A>A)−1A>b,

as desired.

5.5 Eigenvalues as Optimization

Now we will consider an optimization problem that we will see when discussing Principal Component Anal-
ysis, which will lead directly to eigenvalues and eigenvectors. Consider the following problem:

maximize: x>Ax

subj. to: ||x||2 = 1

where A ∈ Sn
. First note that the constraint is the same as ||x||22 = x>x = 1. We can form the Lagrangian

of this problem (don’t worry if you haven’t seen this we will see it much more in the future) as

L(x, λ) = x>Ax− λ(x>x− 1).
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at the optimal value it can be shown as part of the KKT conditions that ∇xL = 0, so

∇xL = 2Ax− 2λx = 0,

so any optimum (maximum or minimum) must satisfy

Ax = λx,

an eigenvalue-eigenvector pair! It can be shown that the largest eigenvalue corresponds to the maximum of
x>Ax and the smallest eigenvalue corresponds to the minimum of x>Ax.
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