
Convex Optimization Overview
Conner DiPaolo

Contents

1 Introduction 2

2 Convex Sets 2
2.1 Examples of Convex and Non-Convex Sets . 2

3 Convex Functions 5
3.1 Convex and Concave Functions . 5
3.2 First Order Conditions: f(x) ≥ f(y) +∇f(y)>(x− y) . 6

3.2.1 Examples On Determining Convexity . 6
3.3 Second Order Conditions: ∇2f � 0 . 7

3.3.1 More Examples On Determining Convexity . 7
3.4 Operations Preserving Convexity . 8

4 Optimization Problems 9
4.1 Optimal Points . 9
4.2 Equivalent Problems . 9

4.2.1 Scaling . 10
4.2.2 Change of Variables . 10
4.2.3 Transformation of Objective and Constraint Functions 10
4.2.4 Slack Variables . 10
4.2.5 Epigraph Form . 10

4.3 Convex Optimization Problems . 11
4.3.1 Global Optimality of a Convex Optimum . 11
4.3.2 Linear Programs . 11
4.3.3 Quadratic Programs . 12

4.4 Examples of Convex Optimization Problems . 12
4.4.1 Analytic Centering . 12
4.4.2 Logistic Regression . 13

5 Algorithms for Solving Convex Problems 14
5.1 Gradient Descent . 14

5.1.1 Minibatch and Stochastic Gradient Descent . 16
5.2 Newton’s Method . 17

6 Duality 18
6.1 Constructing The Dual . 18
6.2 Duality Gap: p? − d? . 19
6.3 The Lagrange Dual Function: g(λ,ν) . 20
6.4 Making Dual Constraints Explicit . 21

6.4.1 The Dual of The Linear Program . 21
6.5 The KKT (Karush-Kuhn-Tucker) Conditions . 21
6.6 The KKT Conditions for Convex Problems . 22

1

x yθx + (1− θ)y

Figure 1: Convex Combination. The line segment between x and y above represents every possible
combination {θx + (1− θ)y : 0 ≤ θ ≤ 1}.

1 Introduction

Convex optimization in a large way influences the way people think about and phrase machine learning
problems. Almost all problems we will see in our studies are developed or can be viewed as optimization
problems. Some problems, like the Support Vector Machine you will all see in the coming weeks, are almost
entirely based in the heart of convex optimization.

We don’t plan on bringing you all up to speed completely on the art of Convex Optimization, but hopefully
in two sections you will know enough to be able to think about problems in new, interesting ways that will
aid your studies in and out of machine learning.

The only real prerequisite for this material is a strong confidence in linear algebra and familiarity with matrix
calculus. Note that much of this material stems from Boyd and Vandenberghe’s insanely influential textbook
Convex Optimization. If you are interested in the topic or need a more in-depth resource, check out the
book. It’s free online1.

2 Convex Sets

The first step into examining convexity is defining what a convex set is when given, for example, a subset
of the real numbers, or the set of matrices.

Definition 2.1 (Convex Combination). In the n = 2 case, the convex combination of points x and y in an
affine space is

θx + (1− θ)y
where 0 ≤ θ ≤ 1. Intuitively, this is the line segment between x and y (consider θ = 0 and θ = 1), as seen
in Figure 1. More generally, a convex combination of points x1,x2, . . . ,xn in an affine space (vector spaces
included) is the combination

θ1x1 + θ2x2 + · · ·+ θnxn = θ>x

where θi ≥ 0 and 1>θ = 1. That is, θ lies on the standard probability simplex.

With this definition of a convex combination we can define a convex set:

Definition 2.2 (Convex Set). A set C is convex if, given x,y ∈ C, every convex combination of x and y is
still in C. Mathematically,

θx + (1− θ)y ∈ C. (0 ≤ θ ≤ 1)

See Figure 2 for an illustration. Intuitively, this means that every line segment between any two points in C
is contained entirely within C.

2.1 Examples of Convex and Non-Convex Sets

Example 2.1 (All of Rn). Rn is convex.

Proof. As a vector space, for any θ1, θ2 ∈ R and x and y in Rn,

θ1x + θ2y ∈ Rn.

Thus, restricting θ2 = 1− θ1 and 0 ≤ θ1 ≤ 1 does not change this fact, and any convex combination is also
in Rn, making the set convex by definition. �

1http://stanford.edu/~boyd/cvxbook/

2

http://stanford.edu/~boyd/cvxbook/

Convex Set Non-Convex Set

Figure 2: Set convexity. Intuitively, a set is convex if a line drawn between any two points within the
set lies completely in the set. The convex set to the left is a convex hull of it’s vertices, meaning the set is
constructed as all possible convex combinations of its vertices. These sets are subsets of R2

.

Example 2.2 (The Non-Negative Orthant Rn+). The set of all vectors

{x : x ∈ Rn and xi ≥ 0}

is convex.

Proof. Left as an exercise to the reader. �

Example 2.3 (Closed Intervals in R). Let C = [a, b] be a subset of the real numbers where a ≤ b. Then C
is convex.

Proof. Suppose, without loss of generality, that x1 ≤ x2 where x1, x2 ∈ [a, b]. Now let 0 ≤ θ ≤ 1. Then

θx1 + (1− θ)x2 ≤ θx2 + (1− θ)x2 = x2

because θx1 ≤ θx2. Similarly,

θx1 + (1− θ)x2 ≥ θx1 + (1− θ)x1 = x1

because (1− θ)x2 ≥ (1− θ)x1. Thus

a ≤ x1 ≤ θx1 + (1− θ)x2 ≤ x2 ≤ b,

and hence
θx1 + (1− θ)x2 ∈ [a, b].

Therefore, by the definition of convexity, [a, b] ⊆ R is convex for any a ≤ b. �

Example 2.4 (The Set of All Complex Hermetian Matrices). Let C = {A : A ∈ Cn×n and A∗ = A}. C is
convex.

Proof. Let A,B ∈ Cn×n be Hermitian matrices and 0 ≤ θ ≤ 1. Then

(θA+ (1− θ)B)∗ = (θA)∗ + [(1− θ)B]
∗

(1)

= θA∗ + (1− θ)B∗ (2)

= θA+ (1− θ)B (because A∗ = A and B∗ = B)

(3)

Thus every convex combination of Hermitian matrices is Hermitian, and by the definition of convexity the
set is convex. �

Example 2.5 (The Set of All Real Symmetric Matrices). Let C = {A : A ∈ Rn×n and A> = A}. C is
convex.

3

Proof. Left as an exercise to the reader. �

Example 2.6 (The Set of All Linear Matrix Inequalities). Let Ai and B be symmetric n× n matrices and
x ∈ Rn. Let C = {x : A(x) � B} where A(x) = x1A1 + · · ·+ xkAk. C is convex.

Proof. Let 0 ≤ θ ≤ 1 and x,y ∈ C. Then

A(θx + (1− θ)y) =
∑
i

[θxi + (1− θ)yi]Ai

= θ
∑
i

xiAi + (1− θ)
∑
i

xiAi

= θA(x) + (1− θ)A(y)

≤ θB + (1− θ)B
= B.

Thus any convex combination of elements of C is contained in C and by definition C is convex. �

Example 2.7 (The Space of Probability Distributions). Let P be the space of continuous probability distri-
butions over Rn. That is, every element of P defines a unique probability density function P(x) ≥ 0 such
that ∫

Rn
P(x)dx = 1.

P is convex.

Proof. Let f and h be valid probability distributions from P. That is,

f, h ∈
{
P(x) :

∫
Rn

P(x)dx = 1 and P(x) ≥ 0

}
.

Now let 0 ≤ θ ≤ 1. Then
θf(x) + (1− θ)h(x) ≥ 0

as a positive combination of positive functions. Similarly,∫
Rn

[θf(x) + (1− θ)h(x)] dx = θ

∫
Rn

f(x)dx+ (1− θ)
∫
Rn

h(x)dx

= θ + (1− θ) = 1.

Thus every convex combination of probability distributions over Rn is a valid distribution (often called a
mixture), and therefore the set of all valid probability distributions over Rn is convex itself. �

Example 2.8 (Disjoint Intervals in R). Let N = [a, b] ∪ [c, d] where a ≤ b < c ≤ d. N is not convex.

Proof. Let b, c ∈ N be as described above. Then for 0 < θ < 1 (not we aren’t including inequality),

θb+ (1− θ)c 6∈ N.

Thus not every convex combination of elements in N is in N , and N is not convex. �

Example 2.9 (The Set of All Stochastic Matrices). The set of all matrices A such that for all elements
0 ≤ Aij ≤ 1 and each row sums to 1,

M = {A : A ∈ Rm×n and 0 ≤ Aij ≤ 1 and A1 = 1},

is convex.

Note that this set is the set of all matrix representations of every possible Markov Chain.

4

Proof. Let A,B ∈M and 0 ≤ θ ≤ 1. Then

c = [θA+ (1− θ)B]ij = θAij + (1− θ)Bij

satisfies 0 ≤ c ≤ 1 as Aij , Bij ∈ [0, 1] and closed intervals on R are convex as seen in Example 2.3.

Further, because A1 = 1 and B1 = 1,

[θA+ (1− θ)B] 1 = θA1 + (1− θ)B1 = θ1 + (1− θ)1 = 1,

as desired. Thus every convex combination of elements withn M remains in M , and by definition the set M
is convex. �

Example 2.10 (Norm Balls). For any valid norm || · || and scalar r ≥ 0, the set

C = {x : ||x|| ≤ r}

is convex.

Proof. Let x and y be elements from C and 0 ≤ θ ≤ 1. Then

||θx + (1− θ)y|| ≤ ||θx||+ ||(1− θ)y|| = θ||x||+ (1− θ)||y|| ≤ θr + (1− θ)r = r,

as desired, where we used the Triangle Inequality for the first step and the second used the homogeneity of
norms. Thus every convex combination of elements in C is within C, and therefore C is convex. �

3 Convex Functions

You likely have already seen convex functions from your time in Calculus I in high school or something
similar. Nevertheless, our treatment will be much more rigorous (though not too rigorous) and be very
applicable to our later studies.

The most important fact to know about convex functions is that they

(a) Every local minimum is a global minimum

(b) Generally have efficient algorithms for finding such a minimizer.

3.1 Convex and Concave Functions

Our idea of a convex set will be useful in considering convex functions.

Definition 3.1 (Convex). Given a convex set C, a function f : C 7→ R is convex if, for 0 ≤ θ ≤ 1, given
any x,y ∈ C,

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Intuitively, this means that a convex function always lies under a line between any two points where it is
evaluated. This is seen in Figure 3.

Definition 3.2 (Concave Functions). Given a convex set C, function f : C 7→ R is concave if −f is convex.
That is, for 0 ≤ θ ≤ 1, given any x,y ∈ C,

f(θx + (1− θ)y) ≥ θf(x) + (1− θ)f(y).

Theorem 3.1 (Restriction To a Line). A function f : Rn 7→ R is convex if and only if f is convex when
restricted to any line that intersects its domain. Mathematically, f is convex if and only if for all x ∈ C and
any v ∈ Rn and t ∈ R,

g(t) = f(x + tv)

is convex where g : {t : x + tv ∈ C} 7→ R
Proof. Omitted. See Convex Optimization by Boyd and Vandenberghe. �

5

x

y

f(x)

f(y)

x y

θf(x) + (1− θ)f(y)

θx + (1− θ)y

Figure 3: Convex Functions. This function f : [a, b] 7→ R is convex because it’s domain is convex and
every line between two points on the function lies above the function.

3.2 First Order Conditions: f(x) ≥ f(y) +∇f(y)>(x− y)

Generally speaking, determining convexity from the definition is hard. In this section we will develop more
tractable conditions that will help us determine if an arbitrary function is convex. The following necessary
and sufficient condition for convexity is called the First Order Condition because it relies only on the first
derivative.

Theorem 3.2 (First Order Conditions). Let f be a function mapping from some convex set C to R. Then
f is convex if and only if, given x and y from C,

f(x) ≥ f(y) +∇f(y)>(x− y).

Proof. Omitted. See Convex Optimization by Boyd and Vandenberghe. �

3.2.1 Examples On Determining Convexity

Theorem 3.3 (Linear Functions are Both Concave and Convex). Given a function f : C 7→ R where C is
a convex set and for any a, b ∈ R and x,y ∈ R

f(ax + by) = af(x) + bf(y),

f is both convex and concave. Note that f is the definition of a linear function.

Proof. Let x,y be any elements of C and 0 ≤ θ ≤ 1. Then by linearity

f(θx + (1− θ)y) = θf(x) + (1− θ)f(y).

Thus by definition f is both convex and concave. �

Example 3.1. f(x) = x2 is convex.

Proof. We will use the much more convenient second order condition for this problem later. Consider x, y ∈ R
and 0 ≤ θ ≤ 1. Then

f(θx+ (1− θ)y) = (θx+ (1− θ)y)2

= (θx+ (1− θ)y)(θx+ (1− θ)y)

= θ2x2 + 2θ(1− θ)xy + (1− θ)2y2.

6

f will be convex if and only if

θf(x) + (1− θ)f(y)− f(θx+ (1− θ)y) ≥ 0

for all x, y. We have

g = θf(x) + (1− θ)f(y)− f(θx+ (1− θ)y) = θx2 + (1− θ)y2 − θ2x2 − 2θ(1− θ)xy − (1− θ)2y2

= θ(1− θ)x2 − 2θ(1− θ)xy + θ(1− θ)y2

= θ(1− θ)(x− y)2

We know (x − y)2 ≥ 0 for all x and y. Similarly, when θ ∈ [0, 1], both θ and 1 − θ are positive, so this
expression is positive. Thus f must be convex, as desired. �

3.3 Second Order Conditions: ∇2f � 0

Here we discuss the most useful condition for determining convexity.

Theorem 3.4 (Second Order Conditions). A twice-differentiable function f : C 7→ R is convex if and only
if and only if the Hessian

∇2f � 0

Proof. Omitted. �

3.3.1 More Examples On Determining Convexity

Example 3.2 (Quadratic Functions). The function f : Rn 7→ R defined by

f(x) = x>Ax + b>x + c

is convex if A � 0.

Proof. We know
∇2f = 2A.

Similarly we know that 2A � 0 if and only if A � 0. Thus by the second order conditions f is convex if and
only if A � 0.

We can also show that f is concave if A � 0. �

Example 3.3. f(x) = a ex is convex if a ≥ 0.

Proof. The Hessian

∇2f =
d2f

dx2
= a ex ≥ 0

as long as a ≥ 0. Thus by the second order conditions f is convex if a ≥ 0. �

Example 3.4. The function f : Rn 7→ R defined by

f(x) = ex
>x = ex

2
1+···+x2

n

is convex.

Proof. Each element of the Hessian

∇2fij =
∂2f

∂xi∂xj
= 4xixje

x>x.

Therefore
∇2f = 4xx>ex

>x.

Is this positive semidefinite? Consider z ∈ Rn. Then

z>∇2f(x)z = z>4xx>ex
>xz = 4(z>x)2ex

>x ≥ 0

because exp(·) and (z>x)2 are both non-negative. Thus ∇2f � 0 and by the second order conditions f is
convex. �

7

3.4 Operations Preserving Convexity

In this section we examine some handy tools for constructing convex functions from other convex func-
tions. There are many more properties than those shown here. See Convex Optimization by Boyd and
Vandenberghe for many others.

Theorem 3.5 (Affine Composition). Given a convex f : Rm 7→ R, any matrix A ∈ Rm×n, x ∈ Rn, and
b ∈ Rm,

g(x) = f(Ax + b)

is convex. The same result holds for concave functions, as you can see from the proof.

Proof.
∇2g = A>∇2f(Ax + b)A.

Then, for any z ∈ Rn,

z>∇2gz = z>A>∇2f(Ax + b)Az = (Az)>∇2f(Ax + b)(Az) ≥ 0

by the convexity assumption, so g is convex. �

Theorem 3.6 (Non-Negative Weighted Sum). The function F : C 7→ R where C is a convex set, fi : C 7→ R
is a convex function, wi ≥ 0 and

F (x) =
∑
i

wifi(x)

is convex.

Proof. Let x,y ∈ C and 0 ≤ θ ≤ 1. Then

F (θx + (1− θ)y) =
∑
i

wifi(θx + (1− θ)y)

≤
∑
i

wi [θfi(x) + (1− θ)fi(y)]

= θF (x) + (1− θ)F (y),

as desired. �

Theorem 3.7 (Pointwise Maximum). Given convex functions fi : C 7→ R, and F : C 7→ R defined as

F (x) = max
i
fi(x),

F is convex.

Proof. By the definition of convexity, given x,y ∈ C and 0 ≤ θ ≤ 1 we have

F (θx + (1− θ)y) = max
i
fi(θx + (1− θ)y)

≤ max
i
{θfi(x) + (1− θ)fi(y)} (because fi is convex)

≤ θmax
i
fi(x) + (1− θ) max

i
fi(y)

= θF (x) + (1− θ)F (y),

as desired. �

8

4 Optimization Problems

An optimization problem is a problem of the form

minimize: f0(x)

subj. to: fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where f0 : Rn 7→ R is called the objective function, fi : Rn 7→ R is an inequality constraint, and
hi : Rn 7→ R is an equality constraint. The goal of an optimization problem, as you might be able to
guess, is to find x in the problem domain domain

D =

m⋂
i=0

dom fi ∩
p⋂
i=1

dom hi

that minimizes f0(x) subject to the given conditions. The problem is said to be feasible if such an x exists,
and infeasible otherwise.

The optimal value p? of the problem above is defined to be

p? = inf{f0(x) : fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}.

If there are feasible points xk with f0(xk)→ −∞ as k →∞, then we say the problem is unbounded below.

Note that we could have a similarly defined maximization problem. Everything is the same except for the
definition of unbounded below, obviously.

4.1 Optimal Points

We say x? is an optimal point (or that it solves the above problem) if x? is feasible and f0(x?) = p?. If an
optimal point exists, we say the problem is solvable.

We say a feasible point x is locally optimal if there exists some R > 0 such that x solves

minimize: f0(z)

subj. to: fi(z) ≤ 0, i = 1, . . . ,m

hi(z) = 0, i = 1, . . . , p

||z− x||2 ≤ R

for variable z. This intuitively means that x minimizes f0 over nearby points in the feasible set.

4.2 Equivalent Problems

Given an optimization problem of the form

minimize: f0(x)

subj. to: fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

we may want to express our problem in a cleaner or easier to solve form. Under certain conditions changing
our problem’s form will not actually change the solution. Note that, as usual, there are a few more possible
transformations that are kosher. Check out Boyd and Vandenberghe for these, but the ones shown here are
likely the only ones you will need.

9

4.2.1 Scaling

The problem

minimize: α0f0(x)

subj. to: αifi(x) ≤ 0, i = 1, . . . ,m

βihi(x) = 0, i = 1, . . . , p

for α > 0 and β 6= 0 is equivalent to the original problem. This should be intuitive since, for example x2

is minimized at 0, changing the scale of your axes maintains that minimum. Similarly, if equality holds (ie.
4x+ 2 = 0) multiplying by any non-zero number on both sides maintains that equality.

4.2.2 Change of Variables

Given an one-to-one mapping φ : Rn 7→ Rn, where the image (range) of φ covers the domain of your problem
D, the problem

minimize: f0(φ(x))

subj. to: fi(φ(x)) ≤ 0, i = 1, . . . ,m

hi(φ(x)) = 0, i = 1, . . . , p

is equivalent to the original. This should be clear. If x solves the original problem, then z = φ−1(x) solves
the transformed problem. The converse also holds.

4.2.3 Transformation of Objective and Constraint Functions

Suppose ψ0 : R 7→ R is monotonically increasing, φ1, . . . , ψm : R 7→ R satisfy φi(u) ≤ 0 if and only if u ≤ 0,
and ψm+1, . . . , φm+p : R 7→ R satisfy φi(u) = 0 if and only if u = 0. The problem

minimize: ψ0(f0(x))

subj. to: ψi(fi(x)) ≤ 0, i = 1, . . . ,m

ψm+i(hi(x)) = 0, i = 1, . . . , p

is equivalent to the original. This should be evident from the conditions we placed on each ψj .

4.2.4 Slack Variables

This will come in very handy. A prudent observation is that fi(x) ≤ 0 if and only if for some si ≥ 0,
fi(x) + si = 0. Thus the problem

minimize: f0(x)

subj. to: fi(x) + si = 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

si ≥ 0, i = 1, . . . ,m

is equivalent to the original.

4.2.5 Epigraph Form

The epigraph form of the original problem is

minimize: t

subj. to: f0(x)− t ≤ 0,

fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where t ∈ R. It should be clear that this is the same as the original problem as the first constraint can be
viewed as f0(x) ≤ t. Thus the objective must always lie under t and minimizing t will minimize the highest
possible value of f0.

10

4.3 Convex Optimization Problems

We will now study the branch of optimization problems we will see extremely often in our studies. We say
a problem of the form

minimize: f0(x)

subj. to: fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is a convex optimization problem if the objective function and inequalities fi are convex, and the equality
constraints hi are linear. Convex problems are, as a whole, extremely nice in the sense that we have efficient
(read ‘polynomial time’) algorithms for finding global optima.

At heart, a convex optimization problem is just a minimization of a convex function within a convex domain.

4.3.1 Global Optimality of a Convex Optimum

The reason that convex optimization problems are so nice to solve is that any optimum is a global optimum.
In other words, if you find some solution you find the solution. This is by no means the case in non-convex
problems such as neural networks, although you might use similar methods to find sufficiently good solutions.

Theorem 4.1 (Global Optimality). Given a convex optimization problem, and local optimum x? such that

f0(x) = inf{f0(z) : z feasible and ||z− x||2 ≤ R}

for some R > 0. x? is the global optimum.

Proof. (Boyd) Suppose such a problem and local optimum. Now suppose, to the contrary, that x is not the
global optimum, and therefore there exists some feasible y such that f0(y) < f0(x). Then ||y − x||2 > R
because otherwise f0(x) ≤ f0(y). Consider a point z given by

z = (1− θ)x + θy and θ =
R

2||y − x||2
.

Then ||x− z||2 = R/2 < R. By convexity of the feasible set, z is feasible. By the convexity of the objective
function f0 we also have

f0(z) ≤ (1− θ)f0(x) + θf0(y) < f0(x),

contradicting our assumption of local optimality. Thus x must be the global optimum (R→∞). �

4.3.2 Linear Programs

While we won’t study Linear Programs much in the course, they are necessary to understand and are a
central tool in operations research and graph algorithms. A linear program is a convex optimization problem
of the form

minimize: c>x

subj. to: Gx � h,

Ax = b

where G ∈ Rm×n and A ∈ Rp×n. Note that because the objective function is linear this could also have
been a maximization problem with no change to convexity. For a ton of interesting applications, see Boyd
and Vandenberghe, or consider taking the Operations Research Course!

11

4.3.3 Quadratic Programs

Interestingly enough, of all standard convex optimization problem classes, quadratic programs seem to come
up the most in machine learning. Basically, pay attention!

A quadratic program is an optimization program of the form

minimize:
1

2
x>Px + q>x + r

subj. to: Gx � h

Ax = b

where P ∈ Sn+, G ∈ Rm×n, and A ∈ Rp×n. In this class of program, we are minimizing a quadratic function
inside of a polyhedron.

4.4 Examples of Convex Optimization Problems

Here we present two examples of applied convex optimization problems. See Convex Optimization by Boyd
& Vandenberghe for many, many more.

4.4.1 Analytic Centering

Consider the problem of finding the ‘center’ of some polygon {x : Ax � b}. We first need to denote what
we consider the optimal center. The Chebyshev Center of a set of points {xi} is the center of the smallest
circle that will fit around all of the points. This is easily expressed as the following optimization problem:

minimize: r

subj. to: ||xi − c||r ≤ r

where r and c are variables. This is obviously convex. We could set xi as the vertices of the polygon to then
find a center. But that has some issues, for example, when your polygon is a very long, thin rectangle with
a triangle slapped onto one side of it. The Chebyshev Center won’t include be affected by the triangle at all
until it hits the end of the circle. To remedy this issue we will consider a more effective method of finding
the center below.

What if we wanted to create a unconstrained convex optimization problem that would given us some definition
of a ‘center’? First note that Ax � b implies that a>i x ≤ bi where ai is the i−th row of A. This condition
is satisfied, obviously, when − log(bi − a>i x) exists. But more importantly, as a>i x approaches bi, we note
that the − log term approaches infinity. This is called a ‘log barrier’. Now if we combine a bunch of log
barriers, say, perhaps, along each of the edges of our polygon and “walking down hill” until we find the point
that minimizes all of the log barriers. This sounds, intuitively like a good idea of a ‘center’, and is called
the Analytic Center of a polygon. This is also easily expressed as a convex optimization problem, this time
without constraints:

minimize: f0(x) = −
∑
i

log(bi − a>i x)

Note that the gradient

∇f0 =
∑
i

ai
bi − a>i x

,

so if you are ‘far’ from a barrier it doesn’t effect your gradient. This can be fed into any standard gradient
based optimizer, as seen in Figure 4

12

Figure 4: Analytic Centering. Here we compute the analytic center of a polygon in R2
. Contour lines

represent the objective surface while the red path represents the progression of gradient descent. The
star is the optimal center. See https://math189r.github.io/materials/section/fig_code/analytic_

centering.py for code to generate this plot.

Now let’s show that the analytic centering problem is convex. First, note that log is a concave function
(check this for yourself), so − log is convex. Second, as affine composition f(Ax + b) preserves convexity,
− log(bi − a>i xi) is also convex. Finally, as a non-negative weighted sum of convex functions, the final
objective f0 is therefore convex.

4.4.2 Logistic Regression

Note that our notation will assume x0 = 1 as a bias term.

Now let’s reconsider logistic regression as an optimization problem. Suppose we have a bunch of points xi,
with labels yi ∈ {0, 1}. We want to classify some new point x. Now suppose we generate a distribution over
the labels of a given point x with

P(y = 1|x,θ) = σ(θ>x) =
1

1 + e−θ
>
x
∈ (0, 1).

Intuitively, this takes regular linear regression over the binary labels {0, 1} and squashes it into a function
f : R 7→ [0, 1] to give us the ability to probabilistically interpret the output of our classifier. In a frequentist
setting we want to maximize the likelihood of our data, that is, the probability of our labelled data given
our parameters (just θ in this case). However, because the actual likelihood will involve products we can
transform into log space (because log(x) is a monotonically increasing function!!!) and equivalently maximize
the log likelihood

L(θ) =

m∑
i=1

logP(y = yi|xi,θ) =

m∑
i=1

log

{
σ(θ>x) if yi = 1

1− σ(θ>x) if yi = 0

Note that due to the binary labels we can represent this compactly as

L(θ) =

m∑
i=1

yi log(σ(θ>x)) + (1− yi) log(1− σ(θ>x)).

Now our (unconstrained) optimization problem becomes simply

maximize: L(θ)

13

https://math189r.github.io/materials/section/fig_code/analytic_centering.py
https://math189r.github.io/materials/section/fig_code/analytic_centering.py

where we could add a λθ>θ regularization term if we place a Gaussian prior on our parameter vector θ.
Usually this would be a good idea.

Now to optimize this, as we will/have seen, first note that the derivative of the sigmoid function σ′(x) =
σ(x) (1− σ(x)). Then the gradient of our log output logP(y = 1|x,θ) = log σ(θ>x) becomes

∇θ log σ(θ>x) = x(1− σ(θ>x)).

Similarly,
∇θ log(1− σ(θ>x)) = −xσ(θ>x).

Prove to yourself why this is correct. Thus the derivative of our objective L(θ) becomes

∇θL =

m∑
i=1

[
yi(1− σ(θ>x))− (1− yi)σ(θ>x)

]
xi =

m∑
i=1

[
yi − σ(θ>x)

]
x.

This can be input into any standard gradient-based optimization algorithm.

Now let’s show that logistic regression is convex. This is equivalent to showing the objective function f0
is concave, as we are maximizing. As affine composition f(Ax + b) and non-negative weighted summation
preserve concavity, one can see that this is the same as showing that

f(x) = log σ(x)

is concave on R. As σ′(x) = σ(x)(1− σ(x)), we can see that

f ′(x) =
σ(x)(1− σ(x))

σ(x)
= 1− σ(x)

and
f ′′(x) = −σ(x)(1− σ(x)),

which always negative, because σ(x) ∈ [0, 1]. Thus the objective and therefore the whole problem of logistic
regression is convex, as desired.

5 Algorithms for Solving Convex Problems

As has been the theme thus far, if you want to see much more information about algorimths for solving
convex optimization problems, see Convex Optimization by Boyd & Vandenberghe. Here we will just revisit
good old gradient descent and Newton’s Method for solving unconstrained convex optimization problems.
Boyd goes into detail on solving constrained optimization problems efficiently, but we likely won’t need to
do much of that (hopefully!).

5.1 Gradient Descent

Suppose, given f : Rn 7→ R, we want to find when f ′(x) = 0. Note that while f need not be convex, if f is
convex we are guarenteed to find the global optimum when we find a critical point. Now picture our function
as a surface mapping R2

to R. Intuitively, if we want to minimize f , we just need to walk in the direction
of ‘down hill’. Assuming f is once-differentiable, we can use the gradient ∇f to define this direction. So,
given a starting point, we need to take steps in the direction of ∇f of some size, called the learning rate η.
We do this until our gradient ∇f is smaller than some ε.
Oftentimes you can use a contant η(t) = 0.01 or some similarly small number. More sophisticated learning
rates and augmentation terms, like adding a momentum term giving an update

xt+1 ← xt − η(t)∇f(xt) + µt(xt − xt−1)

where µt might be a constant around 0.9. You can get a sense of how heuristic these methods are! Some
problems with gradient descent are that

14

x

y

x0

∇f(x0)

x1

−η∇f(x0)

x

y

x0x1

−∇2f(x0)−1∇f(x0)

Figure 5: Optimization Algorithms. A vizualization of gradient descent and Newton’s Method. Newton’s
Method, although you can’t tell much in this example, is much faster. While Newton’s Method analtyically
solves a quadratic approximation of your (hopefully convex) problem at each iteration, gradient descent acts
as an approximation of that, just taking small steps in the right direction to optimize your problem. If the
learning rate η is too large, your iterates will start to diverge. If your learning rate is too small, your iterates
will take too long to converge.

Gradient Descent
input : f , ∇f , η(t), starting point x0, tolerance ε
output: optimal point x?

t← 0
while ||∇f ||2 ≥ ε do

xt+1 ← xt − η(t)∇f(xt)
t← t+ 1

end
return x? = xt+1

15

• it is slow in convergence compared to second order methods

• it provides a number of hyperparameters to set, which can end up using a lot of heuristic based
approaches to improvement

• if your problem isn’t “round” (think x>x where the axes are scaled the same) you will end up zig-
zagging along a basin. Newton’s method remedies this by being scale invariant

5.1.1 Minibatch and Stochastic Gradient Descent

Often times in machine learning specifically we will have huge datasets and objective functions of the form

f0(θ) =
1

m

m∑
i=1

f(xi|θ)

where xi are our training examples and f(x|θ) is our loss function. In this case, m is so large (ie. m > 105

or m > 106) that attempting to compute

∇f0 =
1

m

m∑
i=1

∇f(xi|θ)

at every iteration of training using gradient descent would be too slow. Intuitively, if you use (batch, like
above) gradient descent you have to go through your entire training set each iteration. If you have a million
points, however, the last point i = m will hardly give you any information on average about the surface you
are on. Thus, a natural approximation is to select a random subset of size k at each iteration and use those
k points to compute an approximated gradient

∇f0 ≈
1

k

k∑
i=1

∇f(xi|θ)

and use that to compute the update.

Stochastic Gradient Descent
input : f , ∇f , η(t), starting point θ0, dataset D, tolerance ε, batch size k
output: optimal point θ?

t← 0
while ||∇f ||2 ≥ ε do

select training points X = {xi}ki=1 ⊆ D at random
θt+1 ← θt − η(t)∇f(X|θt)
t← t+ 1

end
return θ? = θt+1

With different values of k this algorithm is called different things. The algorithm is theoretically guarenteed
to converge for any k under certain conditions on hyperparameters.

• k = 1 (Stochastic Gradient Descent): You might think this wouldn’t do too well because you lose so
much information by only looking at a single point but it is actually used heavily in distributed model
learning due to its algorithmic simplicity.

• 1 < k < m (Minibatch Gradient Descent): This is the de-facto standard for solving large problems
(well, with small variants to the update). Usually in Deep Learning people set 15 < k < 256 with
k = 128 being pretty standard.

• k = m This is just regular (batch) gradient descent as seen above.

16

5.2 Newton’s Method

Here we introduce a method that is super fast but probably won’t scale to problems with more than a couple
thousand variables depending on your problem structure. Effectively Newton’s Method does the following
logic:

1. We want to minimize a twice-differentiable function f : Rn 7→ R. We have an initial guess for the
minimizer x0.

2. We know how to minimize quadratic systems x>Ax + b>x + c in closed form. Generally speaking this
is the best approximator to our function that we can optimize in closed form.

3. Why don’t we take your function and approximate it as a quadratic Taylor polynomial about your
guess and set your guess to be the optimum of that approximation?

See Figure 5 for a visualization of a Newton step. Note that, about some x0, the quadratic Taylor approxi-
mation

f̃(x) = f(x0) +∇f(x0)>(x− x0) +
1

2
(x− x0)>∇2f(x0)(x− x0)

with gradient vanishing when

∇f(x) = ∇f(x0) +∇2f(x0)(x− x0) = 0,

or
x = x0 −∇2f(x0)−1∇f(x0).

Note that this looks strikingly similar to gradient descent, except instead of having a scalar learning rate we
have the inverse of a linear map ∇2f(x0)−1. Also, solving that system

∇2f(x0)d = ∇f(x0)

is what calls for trouble when trying to optimize at very large scale. Many approximation algorithms exist
(see L-BFGS for an example) to work in first order methods yet approximate the second order terms during
optimization. For many problems there exists a helpful structure in the Hessian (eg. tridiagonal or arrow
structure) you can exploit to solve that system relatively quickly. In general using a backslash solver (A\b)
is a terrible idea for using Newton’s Method to optimize at scale because of this, but it is much preferred to
using pinv(A)*b or inv(A)*b. If f is just convex, for example you can use a Cholesky decomposition to cut
the backslash time in half.

Newton’s Method
input : f , ∇f , ∇2f , starting point x0, tolerance ε
output: optimal point x?

t← 0
while ||∇f ||2 ≥ ε do

solve ∇2f(xt)dt = ∇f(xt) for dt
xt+1 ← xt − dt
t← t+ 1

end
return x? = xt+1

The reason Newton’s Method is fast is because it obeys what is called quadratic convergence. Roughly
speaking, once your iterates xt get close enough to the optimum, every iteration will double the number of
digits you are precise to. This means that once you have a pretty accurate answer, running for one or two
more iterations will max out double floating point precision on any computer. Even when you aren’t in the
quadratic region, Newton’s Method’s number of iterations to become ε suboptimal is still bounded above by

f(x0)− p?

γ
+ log2 log2(1/ε) (log2 log2(1/ε) ≈ 6.)

where γ is a constant depending on the problem. Usually 1/γ is about 375, depending on the problem, but
Newton’s Method empirically converges much faster than even that bound. See Boys & Vandenberghe for a
proof of this bound.

17

6 Duality

The idea of “duality”, forming a complementary problem that maintains all of the information of your
problem, is found all over mathematics. In optimization as a whole, and convex optimization specifically,
duality is central. First we will investigate an intuitive representation of any constrained convex optimization
problem which will then lead us directly to Lagrange Duality before investigating the implications of this.

6.1 Constructing The Dual

Given an optimization problem (which we will call the primal problem)

minimize: f0(x)

subj. to: fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

note that minimizing f0 under the constraints is the same as optimizing f0 over all of Rn while letting

f0(x) =

{
f0(x) if constraints are satisfied

∞ otherwise.

This makes sense, because if there is any feasible point, there will exist f0(xfeasible) < ∞ if there is any
practical solution to your problem. Otherwise, if f0(xfeasible) = ∞, you have still solved your problem!
The question now is how to change our constrained optimization problem into an unconstrained one by
embedding the constraints in the objective. One simple way might be to use an indicator function

I−(u) =

{
0 if u ≤ 0

∞ if u > 0

to wrap each inequality constraint, so that if at any x any fi(x) > 0, the objective will rise to infinity.
Convince yourself why this would work. Similarly, for equality constraints, if we use another indicator
function

I0(u) =

{
0 if u = 0

∞ otherwise

to wrap each equality, we can assure that our objective diverges to infinity if at any x we have hi(x) 6= 0.
Our problem then becomes

minimize: f0(x) +

m∑
i=1

I−(fi(x)) +

p∑
i=1

I0(hi(x)).

Convince yourself why this is the same. You can intuitively think of the indicator functions as expressing
a “hard displeasure” to the objective whenever constraints are not satisfied. To solve anything tractably
a natural step might be to approximate this “hard displeasure function” with a “soft”, linear displeasure
function

I−(u) ≈ λu for λ ≥ 0 I0(u) ≈ νu for unconstrained ν.

You can immediately see that these linear approximations are not the same, but are always underestimates
of the hard indicators. See Figure 6. Representing our problem in this new way we have an objective

minimize: L(x,λ,ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

subj. to: λ � 0.

We call L(x,λ,ν) the Lagrangian of our optimization problem. As our linear approximation of the indicator
functions are always below these functions, we might see that our primal problem is exactly

p? = inf
x

sup
ν;λ≥0

L(x,λ,ν)

18

u

y

I−(u)∞

λu

u

y

I0(u)
∞

νu

Figure 6: Constrain Indicator Approximation: So long as λ > 0 with ν ≶ 0, λu ≤ I−(u), and
νu ≤ I0(u). This lets us construct the dual in a more tractable manner.

The dual of our problem is just the flip of order with which we are optimizing, namely the dual

d? = sup
ν;λ≥0

inf
x
L(x,λ,ν).

6.2 Duality Gap: p? − d?

As we discussed, the linear approximation of our constraints is always an under approximation, so if we
don’t maximize that first our problem is always an under approximation of our primal problem. Thus we
have the following theorem:

Theorem 6.1 (Weak Duality). For any optimization problem (even a non-convex one),

d? ≤ p?.

Proof. See discussion above. �

From this we can create a handy definition.

Definition 6.1 (Duality Gap). We define the duality gap to be

p? − d? ≥ 0.

As the duality gap tends towards 0 it means our dual better and better approximates our primal problem.
In some (any many we will see) cases, p? = d?. In this case we say strong duality holds, and solving the
dual is equivalent to solving the primal problem. In general this is not the case, but if the problem is convex,
ie. of the form

minimize: f0(x)

subj. to: fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with fi convex, we usually (but not always) will have strong duality. One sufficient but not necessary
condition for strong duality is Slater’s Condition.

Theorem 6.2 (Slater’s Condition). If the primal problem is convex as above, and there exists some x ∈
relint D such that

fi(x) < 0 ∀i and Ax = b,

19

then
d? = p?.

When some of the fi i = 1, . . . , k are affine, we can refine Slater’s Condition to allow

fi(x) ≤ 0, i = 1, . . . , k fi(x) < 0, i = k + 1, . . . ,m Ax = b

to ensure the same strong duality.

6.3 The Lagrange Dual Function: g(λ,ν)

Looking at the dual problem
sup
ν;λ�0

inf
x
L(x,λ,ν),

we can define the Lagrange Dual function

g(λ,ν) = inf
x
L(x,λ,ν).

Then our problem becomes a simple maximization

maximize: g(λ,ν)

subj. to: λ � 0

Example 6.1. Consider the problem

minimize: x2

subj. to: x ≥ 1

Obviously this has a solution of x? = 1 with p? = 12 = 1. Nevertheless we will solve this analytically.
Constructing the Lagrangian we see

L(x, λ) = x2 + λ(1− x)

Now finding the dual function g(λ) = infx L(x, λ) we know at the minimum the derivative

∂L

∂x
= 2x− λ = 0,

so

x? =
1

2
λ.

Plugging this back into our Lagrangian we have

g(λ) = L(x?, λ)

=
1

4
λ2 + λ(1− 1

2
λ)

= −1

4
λ2 + λ = λ(1− 1

4
λ).

Thus g(λ) is a concave quadratic with roots at 0 and 4. By symmetry, this will have a maximum at λ? = 2.
This implies that

x? =
1

2
λ? = 1,

as desired, with p? = 1 and d? = g(λ?) = 2(1− 1
2) = 1, so we maintain strong duality.

20

6.4 Making Dual Constraints Explicit

A lot of the time, like when we will see Support Vector Machines, we will want to find the dual representation
of our problem, with constraints. This is done by taking our primal, finding the dual function, and then
determining a subset of the domain where your problem will have an infinite objective and just setting a
constraint such that that can never happen.

This will make much more sense with the following example.

6.4.1 The Dual of The Linear Program

Consider the standard linear program:

minimize: c>x

subj. to: Ax = b

x � 0

The Lagrangian then becomes

L(x,λ,ν) = c>x− λ>x + (Ax− b)>ν = x>(c− λ +A>ν)− b>ν.

Now to find the dual function g(λ,ν) = infx L(x,λ,ν), note that we can arbitrarily shrink the Lagrangian
unless A>ν − λ + c = 0. Thus

g(λ,ν) =

{
−b>ν if A>ν − λ + c = 0

−∞ otherwise

and then the dual problem
sup
λ�0;ν

g(λ,ν)

becomes, letting ν := −ν

maximize: b>ν

subj. to: A>ν � c

because the −λ is a slack variable. Note that this is also a linear program.

6.5 The KKT (Karush-Kuhn-Tucker) Conditions

There are certain conditions that hold, at optimality, for all (non-convex) problems. These are known as the
KKT (Karush-Kuhn-Tucker) Conditions for Non-convex Problems. Suppose we have a problem of the form

minimize: f0(x)

subj. to: fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

then at dual optimality, for the Lagrangian

L(x,λ?,ν?) = f0(x) +

m∑
i=1

λ?i fi(x) +

p∑
i=1

ν?i hi(x),

21

it follows that x? minimizes L(x,λ?,ν?), so the gradient must vanish:

∇f0(x?) +

m∑
i=1

λ?i∇fi(x?) +

p∑
i=1

ν?i∇hi(x?) = 0

Therefore, at optimality we have

fi(x
?) ≤ 0

hi(x
?) = 0

λ? � 0

λ?i fi(x
?) = 0

∇L(x,λ,ν) = 0.

These are the non-convex KKT conditions.

6.6 The KKT Conditions for Convex Problems

Suppose our primal problem is convex, where x̃, λ̃, and ν̃ satisfy all KKT conditions listed above. Then x̃
and (λ̃, ν̃) are primal and dual optimal, with zero duality gap. To see this we first note that the first two
conditions only assert primal feasibility. Since λ̃i ≥ 0, we know L(x, λ̃, ν̃) is convex in x, so it follows that
x̃ minimizes L over x. Therefore

g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

= f0(x̃) +

m∑
i=1

λ̃ifi(x̃) +

p∑
i=1

ν̃ihi(x̃)

= f0(x̃),

because hi(x̃) = 0 and λ̃ifi(x̃) = 0. Thus any convex optimization problem with a once differentiable ob-
jective, any set of primal/dual variables that satisfy the KKT conditions are primal and dual optimal, and
have zero duality gap.

Further, if a problem satisfies Slater’s Condition, then the KKT conditions provide necessary and sufficient
conditions for optimality.

Example 6.2 (Equality Constrained Convex Quadratic Minimization). Consider the task of solving the
problem

minimize:
1

2
x>Px + q>x + r

subj. to: Ax = b

From the KKT conditions we know at optimality

Ax? = b

to ensure primal feasibility. Further, we can see that this has a Lagrangian

L(x,ν) =
1

2
x>Px + q>x + r + (Ax− b)>ν.

From the KKT conditions, again, we know that ∇L = 0 at optimality, so

∇L(x?,ν?) = Px? + q +A>ν? = 0.

22

Thus we have two equations in two unknowns, and can solve this system analytically in the block form[
P A>

A 0

] [
x?

ν?

]
=

[
−q
b

]
This is known as the KKT system, and is very heavily used in equality constrained convex optimization using
Newton’s Method (think the normal Hessian system but you assert linear feasibility).

23

	Introduction
	Convex Sets
	Examples of Convex and Non-Convex Sets

	Convex Functions
	Convex and Concave Functions
	First Order Conditions: f(x) f(y) + f(y)(x-y)
	Examples On Determining Convexity

	Second Order Conditions: 2 f 0
	More Examples On Determining Convexity

	Operations Preserving Convexity

	Optimization Problems
	Optimal Points
	Equivalent Problems
	Scaling
	Change of Variables
	Transformation of Objective and Constraint Functions
	Slack Variables
	Epigraph Form

	Convex Optimization Problems
	Global Optimality of a Convex Optimum
	Linear Programs
	Quadratic Programs

	Examples of Convex Optimization Problems
	Analytic Centering
	Logistic Regression

	Algorithms for Solving Convex Problems
	Gradient Descent
	Minibatch and Stochastic Gradient Descent

	Newton's Method

	Duality
	Constructing The Dual
	Duality Gap: p- d
	The Lagrange Dual Function: g(,)
	Making Dual Constraints Explicit
	The Dual of The Linear Program

	The KKT (Karush-Kuhn-Tucker) Conditions
	The KKT Conditions for Convex Problems

