
SOLUTION MANUAL
Math 189r

Homework 1
September 19, 2016

There are 9 problems in this set. You need to do 3 problems (due in class on Monday)
every week for 3 weeks. Note that this means you must eventually complete all prob-
lems. Feel free to work with other students, but make sure you write up the homework
and code on your own (no copying homework or code; no pair programming). Feel free
to ask students or instructors for help debugging code or whatever else, though. When
implementing algorithms you may not use any library (such as sklearn) that already im-
plements the algorithms but you may use any other library for data cleaning and numeric
purposes (numpy or pandas). Use common sense. Problems are in no specific order.

1 (regression). Download the data at https://math189r.github.io/hw/data/online_
news_popularity/online_news_popularity.csv and the info file at https://math189r.
github.io/hw/data/online_news_popularity/online_news_popularity.txt. Read the
info file. Split the csv file into a training and test set with the first two thirds of the
data in the training set and the rest for testing. Of the testing data, split the first half
into a ‘validation set’ (used to optimize hyperparameters while leaving your testing data
pristine) and the remaining half as your test set. We will use this data for the remainder
of the problem. The goal of this data is to predict the log number of shares a news article
will have given the other features.

(a) (math) Show that the maximum a posteriori problem for linear regression with a zero-
mean Gaussian prior P(w) = ∏jN (wj|0, τ2) on the weights,

arg max
w

N

∑
i=1

logN (yi|w0 + w>xi, σ2) +
D

∑
j=1

logN (wj|0, τ2)

is equivalent to the ridge regression problem

arg min
1
N

N

∑
i=1

(yi − (w0 + w>xi))
2 + λ||w||22

with λ = σ2/τ2.

(b) (math) Find a closed form solution x? to the ridge regression problem:

minimize: ||Ax− b||22 + ||Γx||22.

(c) (implementation) Attempt to predict the log shares using ridge regression from the
previous problem solution. Make sure you include a bias term and don’t regularize
the bias term. Find the optimal regularization parameter λ from the validation set.
Plot both λ versus the validation RMSE (you should have tried at least 150 parameter

1

https://math189r.github.io/hw/data/online_news_popularity/online_news_popularity.csv
https://math189r.github.io/hw/data/online_news_popularity/online_news_popularity.csv
https://math189r.github.io/hw/data/online_news_popularity/online_news_popularity.txt
https://math189r.github.io/hw/data/online_news_popularity/online_news_popularity.txt

settings randomly chosen between 0.0 and 150.0 because the dataset is small) and λ
versus ||θ?||2 where θ is your weight vector. What is the final RMSE on the test set
with the optimal λ??

(d) (math) Consider regularized linear regression where we pull the basis term out of the
feature vectors. That is, instead of computing ŷ = θ>x with x0 = 1, we compute
ŷ = θ>x + b. This corresponds to solving the optimization problem

minimize: ||Ax + b1− y||22 + ||Γx||22.

Solve for the optimal x? explicitly. Use this close form to compute the bias term for the
previous problem (with the same regularization strategy). Make sure it is the same.

(e) (implementation) We can also compute the solution to the least squares problem us-
ing gradient descent. Consider the same bias-relocated objective

minimize: f = ||Ax + b1− y||22 + ||Γx||22.

Compute the gradients and run gradient descent. Plot the `2 norm between the opti-
mal (x?, b?) vector you computed in closed form and the iterates generated by gradi-
ent descent. Hint: your plot should move down and to the left and approach zero as
the number of iterations increases. If it doesn’t, try decreasing the learning rate.

(a) We are given the maximum a posteriori problem maxw P(w|D) = maxw P(D|w)P(w)
in the form

arg max
w

N

∑
i=1

logN (yi|w0 + w>xi, σ2) +
D

∑
j=1

logN (wj|0, τ2).

Using the Gaussian density we have the equivalent problem

arg max
w

N

∑
i=1
− (yi − w0 −w>xi)

2

2σ2 − log
√

2πσ +
D

∑
i=1
−

w2
j

2τ2 − log
√

2πσ.

Because the constant −(N + D) log
√

2πσ doesn’t change our optimal value, because
we can similarly scale our objective by 2σ2 without changing w?, and because maxi-
mizing a function is equivalent to minimizing it’s negative, we arrive at the equivalent
optimization problem

arg min
w

N

∑
i=1

(yi − w0 −w>xi)
2 +

D

∑
i=1

σ2

τ2 w2
j .

Defining λ = σ2/τ2 we have our final equivalent form:

arg min
w

N

∑
i=1

(yi − w0 −w>xi)
2 + λ||w||22.

2

(b) The Ridge Regression problem

minimize f = ||Ax− b||22 + ||Γx||2

gives

∇ f = ∇
[
(Ax− b)>(Ax− b) + x>Γ>Γx

]
(1)

= ∇
[
x>A>Ax− 2x>A>b + b>b + x>Γ>Γx

]
(2)

∇ f = 0 = 2A>Ax− 2A>b + 2Γ>Γx (3)
(4)

so

x? = (A>A + Γ>Γ)−1A>b

If we let Γ =
√

λ I this gives an objective of the form

minimize f = ||Ax− b||22 + λx>x

and an optimal solution

x? = (A>A + λI)−1A>b

(c) We have an optimal regularization parameter of λ? = 9.306 with a RMSE on the
validation set of 0.834 and a test set RMSE of 0.862. Here is the plot:

0 50 100 150
Regularization Term

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r

Validation Set Metrics

0 50 100 150
Regularization Term

7.00

7.02

7.04

7.06

7.08

7.10

7.12

||
|| 2

The Norm of the Weight Vector

And here is the code (not including plotting and figuring out the optimal value):

df = pd.read_csv('https://math189r.github.io/hw/data/online_news_popularity/'
'online_news_popularity.csv',
sep=', ', engine='python')

3

do train/test/validation split

df['cohort'] = 'train'
df.iloc[int(0.666*len(df)):int(0.833*len(df)),-1] = 'validation'
df.iloc[int(0.833*len(df)):,-1] = 'test'
df.describe()

X_train, y_train = df[df.cohort == 'train'][
[col for col in df.columns if col not in ['url', 'shares', 'cohort']]
], np.log(df[df.cohort == 'train'].shares).reshape(-1,1)
X_val, y_val = df[df.cohort == 'validation'][
[col for col in df.columns if col not in ['url', 'shares', 'cohort']]
], np.log(df[df.cohort == 'validation'].shares).reshape(-1,1)
X_test, y_test = df[df.cohort == 'test'][
[col for col in df.columns if col not in ['url', 'shares', 'cohort']]
], np.log(df[df.cohort == 'test'].shares).reshape(-1,1)

X_train = np.hstack((np.ones_like(y_train), X_train))

X_val = np.hstack((np.ones_like(y_val), X_val))

X_test = np.hstack((np.ones_like(y_test), X_test))

def linreg(X, y, reg=0.0):

eye = np.eye(X.shape[1])

eye[0,0] = 0. # don't regularize bias term!

return np.linalg.solve(

X.T @ X + reg * eye,

X.T @ y

)

theta_optimal = linreg(X_train, y_train, reg=9.34604374950277)

(d) We want to solve

minimize: f = ||Ax + b1− y||22 + ||Γx||22.

The objective becomes

f = ||Ax + b1− y||22 + ||Γx||22 (5)

= (Ax + b1− y)>(Ax + b1− y) + x>Γ>Γx (6)

= x>A>Ax + 2b1>Ax− 2y>Ax− 2b1>y + b2n + y>y + x>Γ>Γx (7)

At optimality we have ∇ f = 0, so

∇x f = 2A>Ax + 2bA>1− 2A>y + 2Γ>Γx = 0, and (8)

∇b f = 21>Ax− 21>y + 2bn = 0. (9)

4

Solving for b? this gives

b? =
1>(y− Ax)

n

This makes sense because if we assume the line is flat (x = 0) the bias term becomes
the mean value of the output, as desired.

Plugging this back in to solve for x?, we find

(A>A + Γ>Γ)x +
1>(y− Ax)

n
A>1− A>y = 0 (10)[

A>A + Γ>Γ− 1
n

A>11>A
]

x = A>y− 1
n

A>11>y (11)[
A>(I− 1

n
11>)A + Γ>Γ

]
x = A>(I− 1

n
11>)y (12)

x? =
[

A>
(

I− 1
n

11>
)

A + Γ>Γ
]−1

A>
(

I− 1
n

11>
)

y. (13)

Note that I is the Identity matrix and 1 is the vector of all ones. y ∈ Rn.

X_train_no_b = X_train[:,1:]

X_val_no_b = X_val[:,1:]

reg_opt = reg[np.argmin(rmse)]

feats = X_train_no_b.shape[1]

n = X_train_no_b.shape[0]

print('==> Computing A_mod (takes a while to construct 1_{n x n})')
A_mod = X_train_no_b.T @ (np.eye(n) - 1./n)

print('==> Computing optimal theta')
theta_opt = np.linalg.solve(

A_mod @ X_train_no_b + reg_opt * np.eye(A_mod.shape[0]),

A_mod @ y_train,

)

print('==> Computing optimal intercept')
b_opt = (y_train - X_train_no_b @ theta_opt).sum() / n

original = linreg(X_train, y_train, reg=reg_opt)

print('==> Distance between intercept and orig: {}'.format(np.abs(original[0] - b_opt)[0]))

print('==> Distance between theta and original: {}'.format(
np.linalg.norm(theta_opt - original[1:])

))

==> Distance between intercept and orig: 5.697042837482513e-11

==> Distance between theta and original: 1.6231311589256314e-10

5

(e) For the optimization problem above,

minimize: f = ||Ax + b1− y||22 + ||Γx||22.

we have the gradients

∇x f =
(

A>A + Γ>Γ
)

x + A>(b1− y), and (14)

∇b f = 1>Ax− 1>y + bn, (15)

as shown above. Convergence plot:

0 100 200 300 400 500
Iterations

1

2

3

4

5

6

7

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r

Gradient Descent
Train RMSE
Validation RMSE

Code:

shape = (X_train_no_b.shape[1],1)

n = X_train_no_b.shape[0]

eps = 1e-6

max_iters = 150

lr_theta = 2.5e-12

lr_b = 0.2

reg_opt = reg[np.argmin(rmse)]

theta_ = np.zeros(shape)

b_ = 0.

grad_theta = np.ones_like(theta_)

grad_b = np.ones_like(b_)

6

objective_train = []

objective_val = []

print('==> Training.')
while np.linalg.norm(grad_theta) > eps and \

np.abs(grad_b) > eps and \

len(objective_train) < max_iters:

objective_train.append(

np.sqrt(

np.linalg.norm(

(X_train_no_b @ theta_).reshape(-1,1) + b_ - y_train,

)**2 / y_train.shape[0]

)

)

objective_val.append(

np.sqrt(

np.linalg.norm(

(X_val_no_b @ theta_).reshape(-1,1) + b_ - y_val,

)**2 / y_val.shape[0]

)

)

grad_theta = (

(X_train_no_b.T @ X_train_no_b + reg_opt * np.eye(shape[0])) @ theta_ +

X_train_no_b.T @ (b_ - y_train)

) / X_train_no_b.shape[0]

grad_b = (

(X_train_no_b @ theta_).sum() - y_train.sum() + b_ * n

) / X_train_no_b.shape[0]

theta_ = theta_ - lr_theta * grad_theta

b_ = b_ - lr_b * grad_b

if len(objective_train) % 25 == 0:

print('-- finishing iteration {} - objective {:5.4f} - grad {}'.format(
len(objective_train), objective_train[-1], np.linalg.norm(grad_theta)

))

print('==> Distance between intercept and orig: {}'.format(np.abs(theta_optimal[0] - b_)[0]))

print('==> Distance between theta and original: {}'.format(
np.linalg.norm(theta_ - theta_optimal[1:])

))

==> Distance between intercept and orig: 0.482700615906861

==> Distance between theta and original: 0.7936643430206658

7

2 (MNIST) Download the training set at http://pjreddie.com/media/files/mnist_train.
csv and test set at http://pjreddie.com/media/files/mnist_test.csv. This dataset,
the MNIST dataset, is a classic in the deep learning literature as a toy dataset to test al-
gorithms on. The problem is this: we have 28× 28 images of handwritten digits as well
as the label of which digit 0 ≤ label ≤ 9 the written digit corresponds to. Given a new
image of a handwritten digit, we want to be able to predict which digit it is. The format
of the data is label, pix-11, pix-12, pix-13, ... where pix-ij is the pixel in the ith

row and jth column.

(a) (logistic) Restrict the dataset to only the digits with a label of 0 or 1. Implement L2
regularized logistic regression as a model to compute P(y = 1|x) for a different value
of the regularization parameter λ. Plot the learning curve (objective vs. iteration)
when using Newton’s Method and gradient descent. Plot the accuracy, precision (p =
P(y = 1|ŷ = 1)), recall (r = P(ŷ = 1|y = 1)), and F1-score (F1 = 2pr/(p + r)) for
different values of λ (try at least 10 different values including λ = 0) on the test set
and report the value of λ which maximizes the accuracy on the test set. What is your
accuracy on the test set for this model? Your accuracy should definitely be over 90%.

(b) (softmax) Now we will use the whole dataset and predict the label of each digit using
L2 regularized softmax regression (multinomial logistic regression). Implement this
using gradient descent, and plot the accuracy on the test set for different values of λ,
the regularization parameter. Report the test accuracy for the optimal value of λ as
well as it’s learning curve. Your accuracy should be over 90%.

(c) (KNN) Solve the same problem posed in part (b) but use K-Nearest Neighbors in-
stead of softmax regression and vary k instead of λ. Only try 3 values for k (1, 5, and
10) and the `2 norm as your metric. Plot and report the same results as part (b).

(a) For the logistic model we have P(y = 1|x; θ) = σ(θTx) and, with a Gaussian prior on
the weights we have the augmented log likelihood

`(θ) = ∑
i

yi log σ(θTx) + (1− yi) log
(

1− σ(θ>x)
)
+

λ

2
||θ||22.

Taking gradients we find

∇θ` = ∑
i

yi

(
1− σ(θ>x)

)
x− (1− yi)σ(θ

>x)x + λθ (16)

= ∑
i

[
yi − σ(θ>xi)

]
xi + λθ (17)

= X>(y− σ(Xθ)) + λθ. (18)

8

http://pjreddie.com/media/files/mnist_train.csv
http://pjreddie.com/media/files/mnist_train.csv
http://pjreddie.com/media/files/mnist_test.csv

From this we can find a Hessian of

∇2` =
d

dθ
∇`> (19)

= ∑
i
∇θσ(θ>x)x>i + λI (20)

= XTdiag [σ(Xθ) (1− σ(Xθ))] X + λI (21)

As it turns out, this problem is intrinsically easy (from a modelling point of view) as
ones and zeros are easily told apart. We can see the convergence plot below:

0 100 200 300 400 500
Iteration

8000

6000

4000

2000

0

Lik
el

ih
oo

d
wi

th
 G

au
ss

ia
n

Pr
io

r

Convergence Plot on Binary MNIST Classification

gradient descent
newton method

Notice how Newton’s Method is much, much faster than raw gradient descent by or-
ders of magnitude. As was (or will be depending on when you read this) discussed in
class/review, this speedup stems from the scale invariance of the algorithm. As was
(or will be depending on when you read this) discussed in class/review, this speedup
stems from the scale invariance of the algorithm. We can tell this problem is easy by
looking at the plots of test metrics for different regularization parameters:

9

0 5 10 15 20 25 30
Regularization Term

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric

Definition of an Easy Problem - MNIST Binary Labels

accuracy
recall
f1_score
precision

Indeed, all of them are perfect for any reasonable regularization parameter. This is
what is known as a easy problem. If we even try out linear regression on this classifica-
tion problem (mapping binary labels to {−1,+1}) we have a relatively solid accuracy
with an even simpler method:

theta = linreg(X_bin_train, y_bin_train*2 - 1, reg=1e-2)

y_pred = X_bin_train @ theta > 0

accuracy(y_bin_test, y_pred) # 0.994788

Another interesting insight comes from looking at the optimal logistic regression pa-
rameter vector:

Parameter Vector - Binary MNIST

0.016

0.012

0.008

0.004

0.000

0.004

0.008

0.012

10

We can see that having a pixel turned on right at the center of the image will heavily
influence the probability of having a digit of 1 (ignoring correlations between param-
eters themselves). Similarly, we can observe a circle representing the digit zero which
is darker and centered around the center of the image.

Here is the code:

import numpy as np

from scipy import sparse

assumes data loaded into X_bin_* and y_bin_*

def sigmoid(x):

return 1 / (1 + np.exp(-x))

def log_likelihood(X, y_bool, theta, reg=1e-6):

mu = sigmoid(X @ theta)

mu[~y_bool] = 1 - mu[~y_bool]

return np.log(mu).sum() - reg*np.inner(theta, theta)/2

def grad_log_likelihood(X, y, theta, reg=1e-6):

return X.T @ (sigmoid(X @ theta) - y) + reg * theta

def newton_step(X, y, theta, reg=1e-6):

mu = sigmoid(X @ theta)

using a cholesky solve is exactly twice as fast as a regular np.linalg.solve.

also, using scipy.sparse.diags will be much more efficient than constructing

the entire diagonal scaling matrix. Same with sparse.eye.

return linalg.cho_solve(

linalg.cho_factor(

X.T @ sparse.diags(mu * (1 - mu)) @ X + reg * sparse.eye(X.shape[1]),

),

grad_log_likelihood(X, y, theta, reg=reg),

)

def lr_grad(

X, y,

reg=1e-6, lr=1e-3, tol=1e-6,

max_iters=300, verbose=False,

print_freq=5,

):

y = y.astype(bool)

theta = np.zeros(X.shape[1])

objective = [log_likelihood(X, y, theta, reg=reg)]

grad = grad_log_likelihood(X, y, theta, reg=reg)

11

while len(objective)-1 <= max_iters and \

np.linalg.norm(grad) > tol:

if verbose and (len(objective)-1) % print_freq == 0:

print('[i={}] likelihood: {}. grad norm: {}'.format(
len(objective)-1, objective[-1], np.linalg.norm(grad),

))

grad = grad_log_likelihood(X, y, theta, reg=reg)

theta = theta - lr * grad

objective.append(log_likelihood(X, y, theta, reg=reg))

if verbose:

print('[i={}] done. grad norm = {:0.2f}'.format(
len(objective)-1, np.linalg.norm(grad)

))

return theta, objective

def lr_newton(

X, y,

reg=1e-6, tol=1e-6, max_iters=300,

verbose=False, print_freq=5,

):

y = y.astype(bool)

theta = np.zeros(X.shape[1])

objective = [log_likelihood(X, y, theta, reg=reg)]

step = newton_step(X, y, theta, reg=reg)

while len(objective)-1 <= max_iters and \

np.linalg.norm(step) > tol:

if verbose and (len(objective)-1) % print_freq == 0:

print('[i={}] likelihood: {}. step norm: {}'.format(
len(objective)-1, objective[-1], np.linalg.norm(step)

))

step = newton_step(X, y, theta, reg=reg)

theta = theta - step

objective.append(log_likelihood(X, y, theta, reg=reg))

if verbose:

print('[i={}] done. step norm = {:0.2f}'.format(
len(objective)-1, np.linalg.norm(step)

))

return theta, objective

12

(b) For softmax regression we have P(y = c|x, W) = 1
Z exp(w>c x) = exp(w>c x)

∑i exp(w>i x)
. Assum-

ing a Gaussian prior on each column of W we have a log likelihood

`(W) = log ∏
i

∏
c

µ
yic
ic − λtr(W>W) (22)

= ∑
i

∑
c

yic log µic − λtr(W>W) (23)

= ∑
i

[(
∑

c
yicw>c xi

)
− log

(
∑

c
exp(w>c xi)

)]
+ λtr(W>W). (24)

This is also known as the negative cross entropy loss (f (W) = −`(W)) as discussed
in Murphy page 255. We can find

∇wc` = ∑
i
(µi − yi)⊗ xi − λW (25)

where ⊗ is the Kronecker product. If we want a closed form and cleaner version to
use with a matrix library, we can see that

∇W` = X>(µ− y) (26)

where y ∈ {0, 1}n×c is the “one-hot encoding” of the output y such that

yij =

{
1 if datum i is digit j
0 otherwise

(27)

and

y1c = 1n. (28)

Similarly, we define µ ∈ [0, 1]n×c as

µi = S(xi) =
exp(W>x)

1> exp(W>x)
(29)

and exp is applied elementwise. Using stochastic gradient descent, we have the test
accuracies over different regularization parameters as follows:

13

0 200 400 600 800 1000
Regularization Parameter

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

M
NI

ST
 T

es
t A

cc
ur

ac
y

+9.216e 1

The scale is confusing, but the maximum test accuracy was 92.21% with λ = 1000.
This corresponds to the For the optimal regularizer we also have the following con-
vergence plot:

0 200 400 600 800 1000 1200 1400
Iteration

1500

1000

500

0

St
oc

ha
st

ic
Lo

g-
Lik

el
ih

oo
d

Softmax Regression on MNIST w/ Regularizer

Also nice is the plot of weights for each number. Note how the model distinguishes
between the different digits (dark is negative and light is positive):

14

0 1 2 3 4

5 6 7 8 9

And here is the code:

import numpy as np

from sklearn.preprocessing import OneHotEncoder

def softmax(x):

s = np.exp(x - np.max(x, axis=1))

return s / np.sum(s, axis=1)

def log_softmax(x):

return x - logsumexp(x, axis=1)

def log_likelihood(X, y_one_hot, W, reg=1e-6):

mu = X @ W

einsum term computes trace(W.T @ W) efficiently

return np.sum(

mu[y_one_hot] - logsumexp(mu, axis=1),

) - reg*np.einsum('ij,ji->', W.T, W)/2

def grad_log_likelihood(X, y_one_hot, W, reg=1e-6):

mu = X @ W # n by c matrix

mu = np.exp(mu - np.max(mu, axis=1)[:,np.newaxis])

mu = mu / np.sum(mu, axis=1)[:,np.newaxis]

return X.T @ (mu - y_one_hot) + reg*W

def softmax_grad(

X, y, reg=1e-6, lr=1e-3, tol=1e-6,

max_iters=300, batch_size=256,

verbose=False, print_freq=5,

):

enc = OneHotEncoder()

y_one_hot = enc.fit_transform(

y.copy().reshape(-1,1),

15

).astype(bool).toarray()

W = np.zeros((X.shape[1], y_one_hot.shape[1]))

ind = np.random.randint(0, X.shape[0], size=batch_size)

objective = [log_likelihood(X[ind], y_one_hot[ind], W, reg=reg)]

grad = grad_log_likelihood(X[ind], y_one_hot[ind], W, reg=reg)

while len(objective)-1 <= max_iters and \

np.linalg.norm(grad) > tol:

if verbose and (len(objective)-1) % print_freq == 0:

print('[i={}] likelihood: {}. grad norm: {}'.format(
len(objective)-1, objective[-1], np.linalg.norm(grad)

))

ind = np.random.randint(0, X.shape[0], size=batch_size)

grad = grad_log_likelihood(X[ind], y_one_hot[ind], W, reg=reg)

W = W - lr * grad

objective.append(log_likelihood(X[ind], y_one_hot[ind], W, reg=reg))

if verbose:

print('[i={}] done. grad norm = {:0.2f}'.format(
len(objective)-1, np.linalg.norm(grad)

))

return W, objective

(c) Code is below. Because this would have taken approximately forever to run we
just downsampled the dataset to 2500 datapoints. It still takes a while, but is bear-
able. Thus we arrive at an approximate lower bound on accuracy of 91.31% from
the stochastic dataset. This is an example of when nonparametric methods such as
K-Nearest-Neighbors might be too slow for a relatively larger dataset. That said, this
downsampled method still performs relatively similar to the softmax regression and
is much simpler to implement, so that would be a plus.

def predict_knn(X_test, X_train, y_train, k=5, verbose=False, print_freq=1000):

y_pred = np.zeros(X_test.shape[0])

for i in range(X_test.shape[0]):

if verbose and i % print_freq == 0:

print('[i={}] done.'.format(i))
img = X_test[i]

ind = np.argpartition(

1./np.linalg.norm(X_train - img[:,np.newaxis].T, axis=1),

-k,

)[-k:]

16

y_pred[i] = np.argmax(np.bincount(y_train[ind]))

return y_pred

downsampling the training set to 2500 data points we get the following

[k=1] accuracy: 0.9131

[k=5] accuracy: 0.9113

[k=10] accuracy: 0.9034

for k in [1,5,10]:

print('[k={}] accuracy: {}'.format(
k,

accuracy(y_test, predict_knn(

X_test, X_train, y_train, k=k,

verbose=True, print_freq=1000,

)),

))

3 (Murphy 2.11 and 2.16)

(a) Derive the normalization constant (Z) for a one dimensional zero-mean Gaussian

P(x; σ2) =
1
Z

exp
(
− x2

2σ2

)
such that P(x; σ2) becomes a valid density.

(b) Suppose θ ∼ Beta(a, b) such that

P(θ; a, b) =
1

B(a, b)
θa−1(1− θ)b−1 =

Γ(a + b)
Γ(a)Γ(b)

θa−1(1− θ)b−1

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the Beta function and Γ(x) is the Gamma func-
tion. Derive the mean, mode, and variance of θ.

(a) As any probability density must integrate to one, we know∫
R
P(x; σ2) dx =

∫
R

1
Z

exp
(
− x2

2σ2

)
dx = 1, (30)

or

Z =
∫
R

exp
(
− x2

2σ2

)
dx. (31)

17

Now consider

Z2 =
∫
R

exp
(
− x2

2σ2

)
dx
∫
R

exp
(
− y2

2σ2

)
dy (32)

=
∫∫

R2
exp

(
−x2 + y2

2σ2

)
dx dy (33)

=
∫ ∞

0

∫ 2π

0
exp

(
− r2

2σ2

)
r dθ dr (34)

= 2π
∫ ∞

0
exp

(
− r2

2σ2

)
r dr (35)

= 2πσ2 exp
(
− r2

2σ2

)0

∞
(36)

= 2πσ2. (37)

Hence we have

Z =
√

2πσ2 =
√

2πσ,

as desired.

(b) Recall

Γ(x + 1) = xΓ(x) (38)

B(a, b) =
∫ 1

0
θa−1(1− θ)b−1dθ =

Γ(a)Γ(b)
Γ(a + b)

. (39)

Then we can compute the mean as

E[θ] =
1

B(a, b)

∫ 1

0
θθa−1(1− θ)b−1dθ (40)

=
1

B(a, b)

∫ 1

0
θa(1− θ)b−1dθ (41)

=
B(a + 1, b)

B(a, b)
(42)

=
Γ(a + 1)Γ(b)
Γ(a + b + 1)

Γ(a + b)
Γ(a)Γ(b)

(43)

=
aΓ(a)Γ(b)

(a + b)Γ(a + b)
Γ(a + b)
Γ(a)Γ(b)

(44)

=
a

a + b
(45)

as desired. To compute the variance V[θ] = E[θ2]− E[θ]2 we can use the same tech-
nique to find

E[θ2] =
a(a + 1)

(a + b + 1)(a + b)
. (46)

18

Thus we have

V[θ] =
a(a + 1)

(a + b + 1)(a + b)
− a2

(a + b)2 (47)

=
a(a + 1)(a + b)− a2(a + b + 1)

(a + b + 1)(a + b)2 (48)

=
ab

(a + b + 1)(a + b)2 . (49)

To compute the mode, we want to find when ∇θP(θ; a, b) = 0 on the interval [0, 1].
Because a constant term won’t change the optimizing value, we can work with the
unnormalized distribution (ignoring the B(a, b) term). This gives

∇θP(θ; a, b) = ∇θθa−1(1− θ)b−1 (50)

= (a− 1)θa−2(1− θ)b−1 − (b− 1)θa−1(1− θ)b−2 (51)

= θa−2(1− θ)b−2 ((1− θ)(a− 1)− θ(b− 1)) (52)

= θa−2(1− θ)b−2 (a− 1− θ(a + b− 2)) = 0. (53)

Therefore the right term must equal zero, or the mode

θ? =
a− 1

a + b− 2
. (54)

4 (Murphy 2.15) Let Pemp(x) be the empirical distribution and let q(x|θ) be some model.
Show that arg minq KL(Pemp||q) is obtained by q(x) = q(x; θ̂) where θ̂ = arg maxθ L(q,D)
is the maximum likelihood estimate.

Let Pemp(x) be the empirical distribution for the discrete data D = {x1, x2, . . . , xn}. Con-
sider

KL(Pemp‖q) =
∫
S

Pemp(x) log
Pemp(x)
q(x; θ)

dx, (55)

which can be written as∫
S

Pemp(x) log Pemp(x)dx−
∫
S

Pemp(x) log q(x; θ)dx. (56)

From equation 2.40 in Murphy, the empirical density can be written as

Pemp(x) =
1
n

n

∑
i=1

δ(x− xi) (57)

19

such that

KL(Pemp‖q) =
∫
S

Pemp(x) log Pemp(x) dx−
∫
S

1
n

n

∑
i=1

δ(x− xi) log q(x; θ) dx. (58)

Because
∫

f (x)δ(x− t) dt = f (t) this becomes∫
S

Pemp(x) log Pemp(x)dx− 1
n

n

∑
i=1

log(q(xi; θ)). (59)

To pick θ to minimize the above value, we only have to consider the term

arg min
θ

−
n

∑
i=1

log(q(xi; θ)) = arg max
θ

n

∑
i=1

log(q(xi; θ) (60)

because all other therms don’t depend on the parameter θ of q. We can see that the term
to maximize is precisely the log likelihood of the probability distribution q on data D, as
desired.

5 (Linear Transformation) Let y = Ax + b be a random vector. show that expectation is
linear:

E[y] = E[Ax + b] = AE[x] + b.

Also show that

cov[y] = cov[Ax + b] = Acov[x]A> = AΣA>.

(a) We can see that

E[y] =
∫
S
(Ax + b) P(x) dx (61)

= A
∫
S

x P(x) dx + b
∫
S
P(x) dx (62)

= AE[x] + b, (63)

as desired.

(b) We start with the definition of covariance cov[x] = Σ = E[(x− E[x])(x− E[x])>]. We
can see

cov[y] = cov[Ax + b] (64)

= E[(Ax + b− E[Ax + b])(Ax + b− E[Ax + b])>] (65)

= E[(Ax + b− AE[x]− b])(Ax + b− AE[x]− b])>] (66)

= E[A(x− E[x])(x− E[x])>A>] (67)

= AE[(x− E[x])(x− E[x])>]A> (68)

= Acov[x]A>, (69)

as desired.

20

6 Given the dataset D = {(x, y)} = {(0, 1), (2, 3), (3, 6), (4, 8)}

(a) Find the least squares estimate y = θ>x by hand using Cramer’s Rule.

(b) Use the normal equations to find the same solution and verify it is the same as part
(a).

(c) Plot the data and the optimal linear fit you found.

(d) Find randomly generate 100 points near the line with white Gaussian noise and then
compute the least squares estimate (using a computer). Verify that this new line is
close to the original and plot the new dataset, the old line, and the new line.

(a) Let the matrix

X =

1 0
1 2
1 3
1 4

 . (70)

We then have

X>X =

[
4 9
9 29

]
. (71)

Similarly we have

X>y = X>

1
3
6
8

 =

[
18
56

]
. (72)

By the normal equations we know that X>Xθ? = X>y. Using Cramer’s Rule we see
that

θ?0 =

∣∣∣∣18 9
56 29

∣∣∣∣∣∣∣∣4 9
9 29

∣∣∣∣ =
18
35

(73)

θ?1 =

∣∣∣∣4 18
9 56

∣∣∣∣∣∣∣∣4 9
9 29

∣∣∣∣ =
62
35

(74)

(75)

with our line

ŷ = θ0 + θ1x. (76)

21

(b) On the computer we have by the normal equation

θ = (X>X)−1X>y =

[
0.514
1.771

]
, (77)

as desired.

(c) Plot is below:

1 0 1 2 3 4 5

0

2

4

6

8

(d) Plot is below. New line is close.

1 0 1 2 3 4 5

2

0

2

4

6

8

10
old
new

22

7 (Murphy 8.3) Gradient and Hessian of the log-likelihood for logistic regression.

(a) Let σ(x) = 1
1+e−x be the sigmoid function. Show that

σ′(x) = σ(x) [1− σ(x)] .

(b) Using the previous result and the chain rule of calculus, derive an expression for the
gradient of the log likelihood for logistic regression.

(c) The Hessian can be written as H = X>SX where S = diag(µ1(1− µ1), . . . , µn(1−
µn)). Derive this and show that H � 0 (A � 0 means that A is positive semidefinite).

(a) We can see that

σ′(x) = ∇
(
1 + e−x)−1 (78)

= e−x
(

1 + e−x)−2 (79)

=
1

1 + e−x
1 + e−x − 1

1 + e−x (80)

= σ(x) (1− σ(x)) , (81)

as desired.

(b) We have

`(θ) = ∑
i

yi log σ(θ>xi) + (1− yi) log(1− σ(θ>xi)).

Taking gradients, we find that

∇θ`(θ) = ∑
i

yi

(
1− σ(θ>x)

)
xi + (1− yi)σ(θ

>x)xi (82)

= ∑
i

(
yi − σ(θ>xi)

)
xi (83)

= X>(y− µ) (84)

where µ = σ(Xθ).

(c) For the Hessian we have

−∇2`(θ) = ∇θ

[
X>µ− X

]>
(85)

= ∇µ>X = ∇σ(Xθ)>X (86)

=
(
diag(µ′)X

)> X (87)

= X>diag (µ(1− µ)) X (88)

by the chain rule.

23

(d) To show∇2`(θ) is trivial. It is a simple excercise to show that saying −∇2`(θ) is pos-
itive semi-definite is equivalent to showing diag (µ(1− µ)) is positive definite. Be-
cause the eigenvalues of a diagonal matrix are just the diagonal elements, we simply
need to show that

µi (1− µi) = σ(θ>xi)
(

1− σ(θ>xi)
)
≥ 0. (89)

We know 0 < σ(·) < 1, and η(1− η) ≥ 0 only when 0 ≤ η ≤ 1, so we are done
and the hessian of the log likelihood is negative definite (the negative log likelihood
hessian is positive definite). Note that this implies our problem is convex.

8 (Murphy 9) Show that the multinomial distribution

Cat(x|µ) =
K

∏
k=1

µ
xk
k

is in the exponential family and show that the generalized linear model corresponding to
this distribution is the same as multinomial logistic regression.

To show that the multinomial distribution is in the exponential family, we simply need to
rewrite the distribution to include an exponential and logarithm:

K

∏
i=1

µ
xk
k = exp

(
log

(
K

∏
i=1

µ
xi
i

))
.

The next step is to use the fact log(ab) = log(a) + log(b) and apply it K-many times to
the product in the argument to obtain

exp

(
log

(
K

∏
i=1

µ
xi
i

))
= exp

(
K

∑
k=1

log
(
µ

xi
i
))

.

Next we use the rule log(ab) = b log(a) to shift the exponents down and obtain

exp

(
K

∑
i=1

log
(
µ

xi
i
))

= exp

(
K

∑
i=1

xi log(µi)

)
.

Now observe that since ∑K
i=1 µi = 1, we then need only specify the first K − 1 of these

terms, since the termµK will automatically be determined at the end. We can therefore
split our summation up into

24

exp

(
K

∑
i=1

xi log(µi)

)
= exp

(
K−1

∑
i=1

xi log(µi) + xK log(µK)

)

= exp

[
K−1

∑
i=1

xi log(µi) +

(
1−

K−1

∑
i=1

xi

)
log

(
1−

K−1

∑
i=1

µi

)]

= exp

[
K−1

∑
i=1

xi

(
log(µi)− log

(
1−

K−1

∑
i=1

µi

))
+ log

(
1−

K−1

∑
i=1

µi

)]

= exp

[
K−1

∑
i=1

xi log
(

µi

µK

)
+ log(µK)

]

where we use the substitution µK = 1−∑K−1
i=1 µi. Therefore taking the vector

θ =

log
(

µ1
µK

)
...

log
(

µK−1
µK

)

We can therefore make the substitution that µi = µKeθi and

µK = 1− µK

K−1

∑
i=1

eθi

implying that

µK =
1

1 + ∑K−1
i=1 eθi

hence

µi =
eθi

1 + ∑K−1
i=1 eθi

.

Writing the distribution as Cat(x|µ) = exp(θ>x− A(θ)) we conclude that

25

A(θ) = − log(µK) = log
(

1 + θT1
)

where the boldface 1 is the vector of all ones. This example is written out on page 283 of
Murphy, as well.

9 Download the Iris dataset from https://vincentarelbundock.github.io/Rdatasets/

csv/datasets/iris.csv (you can read about the history behind this dataset at https://
en.wikipedia.org/wiki/Iris_flower_data_set). Our goal is to predict the subspecies
of the Iris flower given the sepal length and petal width using Gaussian Discriminant
Analysis (Murphy 4.2). Plot the dataset (with different colors for different classes) along
with the mean parameters for regular (unlinked/nonlinear) Gaussian Discriminant Anal-
ysis. Report the accuracy on the entire dataset for running {linear discriminant analysis
with a bunch of different parameters of the regularization parameter λ, the nonlinear dis-
criminant analysis you plotted above}.

You should read all of 4.2 from Murphy for this problem. Code and plot are below.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal Length

0.0

0.5

1.0

1.5

2.0

2.5

P
et

al
 W

id
th

Gaussian Discriminant Analysis Centroids for Iris
Petal.Width
setosa
virsicolor
virginica

def discriminant_analysis(X, y, linear=False, reg=0.0):

labels = np.unique(y)

mu = {}

cov = {}

pi = {}

for label in labels:

26

https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/iris.csv
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set

pi[label] = (y == label).mean()

mu[label] = X[y == label].mean(axis=0)

diff = X[y == label] - mu[label]

cov[label] = diff.T @ diff / (y == label).sum()

if linear:

tie covariance matrices

cov = sum((y == label).sum() * cov[label] for label in labels)

cov = cov / y.shape[0]

cov = reg*np.diag(np.diag(cov)) + (1-reg)*cov

return pi, mu, cov

def normal_density(X, mu, cov):

predict class probability

diff = X - mu

return np.exp(-diff.T @ np.linalg.inv(cov) @ diff / 2) / (

(2 * np.pi)**(-X.shape[0]/2) * np.sqrt(np.linalg.det(cov))

)

def predict_proba(X, pi, mu, cov):

prob = np.zeros((X.shape[0], len(pi)))

if type(cov) is not dict:

covariance = cov

cov = defaultdict(lambda: covariance)

for i, x in enumerate(X):

for j in range(len(pi)):

prob[i,j] = pi[j] * normal_density(x, mu[j], cov[j])

prob = prob / prob.sum(axis=1)[:,np.newaxis]

return prob

X = df[['Sepal.Length','Petal.Width']].as_matrix()
y = df.species.as_matrix()

pi, mu, cov = discriminant_analysis(

X,

y,

linear=False,

)

print('[linear=True, reg=0.00] accuracy={:0.4f}'.format(
(np.argmax(predict_proba(X, pi, mu, cov), axis=1) == y).mean()

))

for reg in np.linspace(0.0,1.0,20):

pi, mu, cov = discriminant_analysis(

27

X,

y,

linear=True, reg=reg,

)

print('[linear=False,reg={:0.2f}] accuracy={:0.4f}'.format(
reg, (np.argmax(predict_proba(X, pi, mu, cov), axis=1) == y).mean()

))

This outputs the following accuracies:

[linear=True, reg=0.00] accuracy=0.9667

[linear=False,reg=0.00] accuracy=0.9600

[linear=False,reg=0.05] accuracy=0.9600

[linear=False,reg=0.11] accuracy=0.9533

[linear=False,reg=0.16] accuracy=0.9533

[linear=False,reg=0.21] accuracy=0.9533

[linear=False,reg=0.26] accuracy=0.9533

[linear=False,reg=0.32] accuracy=0.9533

[linear=False,reg=0.37] accuracy=0.9533

[linear=False,reg=0.42] accuracy=0.9533

[linear=False,reg=0.47] accuracy=0.9533

[linear=False,reg=0.53] accuracy=0.9600

[linear=False,reg=0.58] accuracy=0.9600

[linear=False,reg=0.63] accuracy=0.9600

[linear=False,reg=0.68] accuracy=0.9600

[linear=False,reg=0.74] accuracy=0.9600

[linear=False,reg=0.79] accuracy=0.9600

[linear=False,reg=0.84] accuracy=0.9600

[linear=False,reg=0.89] accuracy=0.9600

[linear=False,reg=0.95] accuracy=0.9600

[linear=False,reg=1.00] accuracy=0.9600

28

