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Homework 1
October 10, 2016

There are 6 problems in this set. You need to do 3 problems (due in class on Monday)
every week for 2 weeks. Note that this means you must eventually complete all prob-
lems. Feel free to work with other students, but make sure you write up the homework
and code on your own (no copying homework or code; no pair programming). Feel free
to ask students or instructors for help debugging code or whatever else, though. When
implementing algorithms you may not use any library (such as sklearn) that already im-
plements the algorithms but you may use any other library for data cleaning and numeric
purposes (numpy or pandas). Use common sense. Problems are in no specific order.

1. (Conditioning a Gaussian) Note that from Murphy page 113. “Equation 4.69 is of
such importance in this book that we have put a box around it, so you can easily find
it.” That equation is important. Read through the proof of the result. Suppose we have a
distribution over random variables x = (x1, x2) that is jointly Gaussian with parameters

µ =

[
µ1
µ2

]
Σ =

[
Σ11 Σ12
Σ21 Σ22

]
,

where

µ1 =

[
0
0

]
, µ2 = 5, Σ11 =

[
6 8
8 13

]
, Σ>21 = Σ12 =

[
5

11

]
, Σ22 =

[
14
]

.

Compute

(a) The marginal distribution p(x1). Plot the density in R2.

(b) The marginal distribution p(x2). Plot the density in R1.

(c) The conditional distribution p(x1|x2)

(d) The conditional distribution p(x2|x1)

2. (`1-Regularization) Consider the `1 norm of a vector x ∈ Rn:

‖x‖1 = ∑
i
|xi|.

Plot the norm-ball Bk = {x : ‖x‖1 ≤ k} for k = 1. On the same plot, plot the Euclidean
norm-ball Ak = {x : ‖x‖2 ≤ k} for k = 1 behind the first plot. Show that the optimization
problem

minimize: f (x)
subj. to: ‖x‖p ≤ k
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is equivalent to

minimize: f (x) + λ‖x‖p

(hint: create the Lagrangian). With this knowledge, and the plots given above, argue why
using `1 regularization (adding a λ‖x‖1 term to the objective) will give sparser solutions
than using `2 regularization for suitably large λ.

3. (Lasso) Show that placing an equal zero-mean Laplace prior on each element of the
weights θ of a model is equivelent to `1 regularization in the Maximum-a-Posteriori esti-
mate

maximize: P(θ|D) = P(D|θ)P(θ)
P(D) .

Note the form of the Laplace distribution is

Lap(x|µ, b) =
1
2b

exp
(
−|x− µ|

b

)
where µ is the location parameter and b > 0 controls the variance. Plot the density
Lap(x|0, 1) and the standard normalN (x|0, 1) and suggest why this would lead to sparser
solutions than a Gaussian prior on each elements of the weights (which correspond to `2
regularization).

4. (Lasso Feature Selection) Ignoring undifferentiability at x = 0, take ∂|x|
∂x = sign(x).

Using this, show that ∇‖x‖1 = sign(x) where sign is applied elementwise. Derive the
gradient of the `1 regularized linear regression objective

minimize: ‖Ax− b‖2
2 + λ‖x‖1

Now consider the shares dataset we used in problem 1 of homework 1 (https://math189r.
github.io/hw/data/online_news_popularity/online_news_popularity.txt). Implement
a gradient descent based solution of the above optimization problem for this data. Pro-
duce the convergence plot (objective vs. iterations) for a non-trivial value of λ. In the
same figure (and different axes) produce a ‘regularization path’ plot. Detailed more in
section 13.3.4 of Murphy, a regularization path is a plot of the optimal weight on the y
axis at a given regularization strength λ on the x axis. Armed with this plot, provide
an ordered list of the top five features in predicting the log-shares of a news article from
this dataset (with justification). We can see a more detailed analysis of this at https://
en.wikipedia.org/wiki/Proximal_gradient_methods_for_learning and https://web.

stanford.edu/~boyd/papers/pdf/prox_algs.pdf but you will have to wrap the gradient
descent step with a threshold function

proxγ(x)i =


xi − γ xi > γ

0 |xi| ≤ γ

xi + γ xi < −γ
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so that each iterate

xi+1 = proxλγ (xi − γ∇ f (xi))

where γ is your learning rate. Tip: you can reuse most of your code from the first home-
work.

5. (SVD Image Compression) Load the image of a scary clown at http://i.imgur.com/
X017qGH.jpg into a matrix/array. Plot the progression of the 100 largest singular values
for the original image and a randomly shuffled version of the same image (all on the same
plot). In a single figure plot a grid of four images: the original image, and a rank k trun-
cated SVD approximation of the original image for k ∈ {2, 10, 20}.

6. (Murphy 12.5 - Deriving the Residual Error for PCA) It may be helpful to reference
section 12.2.2 of Murphy.

(a) Prove that∥∥∥∥∥xi −
k

∑
j=1

zijvj

∥∥∥∥∥
2

= x>i xi −
k

∑
j=1

v>j xix>i vj.

Hint: first consider the case when k = 2. Use the fact that v>i vj is 1 if i = j and 0
otherwise. Recall that zij = x>i vj.

(b) Now show that

Jk =
1
n

n

∑
i=1

(
x>i xi −

k

∑
j=1

v>j xix>i vj

)
=

1
n

n

∑
i=1

x>i xi −
k

∑
j=1

λj.

Hint: recall that v>j Σvj = λjv>j vj = λj.

(c) If k = d there is no truncation, so Jd = 0. Use this to show that the error from only
using k < d terms is given by

Jk =
d

∑
j=k+1

λj.

Hint: partition the sum ∑d
j=1 λj into ∑k

j=1 λj and ∑d
j=k+1 λj.
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