
SOLUTION
Math 189r

Homework 3
November 7, 2016

There are 5 problems in this set. You need to do 3 problems the first week and 2 the sec-
ond week. Instead of a sixth problem, youare encouraged to work on your final project.
Feel free to work with other students, but make sure you write up the homework and
code on your own (no copying homework or code; no pair programming). Feel free to
ask students or instructors for help debugging code or whatever else, though. When
implementing algorithms you may not use any library (such as sklearn) that already im-
plements the algorithms but you may use any other library for data cleaning and numeric
purposes (numpy or pandas). Use common sense. Problems are in no specific order.

1 (Murphy 11.2 - EM for Mixtures of Gaussians) Show that the M step for ML estimation
of a mixture of Gaussians is given by

µk =
∑i rikxi

rk

Σk =
1
rk

∑
i

rik(xi − µk)(xi − µk)
> =

1
rk

∑
i

rikxix>i − rkµkµ>k .

We have the complete data log likelihood

`(µk, Σk) = ∑
k

∑
i

rik logP(xi|θk) (1)

= −1
2 ∑

i
rik

(
log |Σk|+ (xi − µk)

>Σ−1
k (xi − µk)

)
. (to a constant)

Then differentiating with respect to µk we have

∂`

∂µk
= ∑

i
rikΣ−1

k (xi − µk) (2)

= Σ−1
k ∑

i
rik(xi − µk) = 0 (since Σ−1

k is linear)

so at optimality we have

∑
i

rikxi = µk ∑
i

rik, (3)

which gives the desired result. Differentiating with respect to Σk we have1

∂`

∂Σk
= −1

2 ∑
i

rik

(
Σ−1

k − Σ−1
k (xi − µk)(xi − µk)

>Σ−1
k

)
= 0. (4)

1http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf
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This gives us the optimality condition that

∑
i

rik I =

(
∑

i
rik(xi − µk)(xi − µk)

>
)

Σ−1
k . (5)

Multiplying by Σk on the right and dividing by rk = ∑i rik gives the desired result.

2 (Murphy 11.3 - EM for Mixtures of Bernoullis) Show that the M step for ML estimation
of a mixture of Bernoullis is given by

µkj =
∑i rikxij

∑i rik
.

Show that the M step for MAP estimation of a mixture of Bernoullis with a β(α, β) prior
is given by

µkj =

(
∑i rikxij

)
+ α− 1

(∑i rik) + α + β− 2
.

(a) We have the complete data log likelihood

`(µ) = ∑
i

∑
k

rik logP(xi|θk) (6)

= ∑
i

∑
k

rik ∑
j

xij log µkj + (1− xij) log(1− µkj) (7)

where i is the datapoint index, k is the component, and j is the dimension index of the
D dimensional bit vectors. Taking the derivative with respect to µkj we have

∂`

∂µkj
= ∑

i
rik

(
xij

µkj
−

1− xij

1− µkj

)
(8)

= ∑
i

rik

(
xij − µkj

µkj(1− µkj)

)
(9)

=
1

µkj(1− µkj)
∑

i
rik

(
xij − µkj

)
= 0. (10)

This gives the optimality condition

∑
i

rikxij = µkj ∑
i

rik (11)

which gives the desired result.
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(b) We have the complete data log likelihood plus the log prior (ignoring the π terms as
we are maximizing without regard to them)

`(µ) = ∑
i

∑
k

rik logP(xi|µk) + logP(µk) (12)

= ∑
i

∑
k

rik

(
∑

j
xij log µkj + (1− xij) log(1− µkj)

)
+

(α− 1) log µkj + (β− 1) log(1− µkj). (13)

Taking derivatives we have

∂`

∂µ
= ∑

i

(
rikxij + α− 1

µkj
−

rik(1− xij) + β− 1
1− µkj

)
(14)

=
1

µkj(1− µkj)
∑

i
rikxij − rikµkj + α− 1− µkjα + µkj − µkjβ + µkj (15)

=
1

µkj(1− µkj)

[
∑

i
rikxij −

(
∑

i
rik + α + β− 2

)
µkj + α− 1

]
= 0. (16)

This gives the optimality condition

∑
i

rikxij + α− 1 =

(
∑

i
rik + α + β− 2

)
µkj, (17)

which gives the desired result. Note that if α = β = 1 we arrive at the original max-
imum likelihood estimate, which makes sense since β(1, 1) is a uniform distribution
over [0, 1] so it is as if there is no prior at all.

3 (MAP Mixture of Gaussians) Consider a mixture of Gaussians with a Dirichlet prior
on the mixture weights π ∼ Dir(α) and a Negative Inverse Walshart prior on the mean
and covariance within each class µk, Σk ∼ NIW(m0, κ0, ν0, S0) with κ0 = 0 so only the
covariance matrices are regularized. Use S0 = diag(s2

1, . . . , s2
D)/K1/D where sj = ∑i(xij−

xj)
2/N is the pooled variance in dimension j. Use ν0 = D + 2, as that is the weakest prior

that is still proper. Use α = 1. This is all detailed in Murphy 11.4.2.8. Download the
wine quality data at https://archive.ics.uci.edu/ml/machine-learning-databases/
wine-quality/winequality-red.csv and https://archive.ics.uci.edu/ml/machine-learning-databases/

wine-quality/winequality-white.csv. Pool both red and white wine datasets into one
dataset and cluster this data using a 2 component MAP Gaussian mixture model with the
EM algorithm. Do the clusters roughly correspond to the color of the wine {white,red}
(back this with numbers)? Provide a convergence plot of the MAP objective. If it doesn’t
monotonically increase there is a bug in your code or math.
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Code is below. Note the convergence plot below is monotonically increasing, so we can be
more sure that our implementation is correct. Also note that the cluster assigned for the
points is highly correlated with being either white or red wine, so the clusters do roughly
correspond to the wine color!
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MAP Gaussian Mixture Model

from collections import namedtuple

import numpy as np

import matplotlib.pyplot as plt
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import pandas as pd

from scipy import stats

from sklearn import metrics

plt.style.use("default")

def em(X, k, theta, objective,

likelihood, m_step, max_iter=100,

print_freq=10):

""" em

EM algorithm to compute theta which minimizes objective.

:param X: data matrix

:type X: array-like of shape [datapoints, features]

:param k: number of mixture components

:type k: int

:param objective: objective (MLE or MAP) for the problem

:type objective: func[X, r, pi, theta] -> float

:param likelihood: (vectorized) P(x_i | theta)

:type likelihood: func[X, theta] -> np.ndarray[X.shape[0],k]

:param m_step: take in r_ik and data and compute the new theta

:type m_step: func[X, r] -> pi, theta

:param max_iter: max number of iterations to take

:type max_iter: int

:returns: list of all objectives for each iteration, r, pi, and the final theta

:rtype: (list[float], np.ndarray, np.ndarray, tuple)

"""

r = np.ones((X.shape[0], k)) / k

pi = np.ones(k) / k

objectives = [objective(X, r, pi, theta)]

for i in range(max_iter):

if (i % print_freq) == 0:

print("[i={}] objective={}".format(i, objectives[-1]))

# e-step

r = likelihood(X, theta) * pi

r = r / r.sum(axis=1)[:,np.newaxis]

# m-step

pi, theta = m_step(X, r)

objectives.append(objective(X, r, pi, theta))

return (objectives, r, pi, theta)
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def gmm(X, k, prior_alpha, max_iter=100, print_freq=10):

""" gmm

Gaussian mixture model with priors.

:param X: data matrix

:type X: array-like of shape [datapoints, features]

:param k: number of mixture components

:type k: int

:param prior_alpha: Dirichlet prior alpha for pi

:type prior_alpha: np.ndarray[k]

:param max_iter: max number of iterations to take

:type max_iter: int

"""

S_0 = np.diag(np.std(X, axis=0)**2) / k**(1/X.shape[1])

Theta = namedtuple("GMM", "mean cov")

theta = Theta(

mean=X[np.random.randint(0, X.shape[0], (k,))],

cov=np.tile(S_0, (k,1,1)),

)

def likelihood(X, theta):

p = np.zeros((X.shape[0], k))

for i in range(k):

p[:,i] = stats.multivariate_normal.pdf(

X, theta.mean[i], theta.cov[i] + 1e-4*np.eye(X.shape[1]),

)

return p

denominator = X.shape[0] + prior_alpha.sum() - k

prior_nu = X.shape[1] + 2

def m_step(X, r):

r_sum = r.sum(axis=0)

pi = (r_sum + prior_alpha - 1) / denominator

mu = ((X[:,:,np.newaxis] * r[:,np.newaxis,:]).sum(axis=0) / r_sum).T

sigma = np.zeros((k, X.shape[1], X.shape[1]))

for i in range(k):

diff = (X - mu[i]) * np.sqrt(r[:,i])[:,np.newaxis]

sigma[i] = (diff.T @ diff + S_0) / (prior_nu + r_sum[i] + X.shape[1] + 2)

return pi, Theta(mean=mu, cov=sigma)

def objective(X, r, pi, theta):

log_prior = sum(np.log(stats.invwishart.pdf(

theta.cov[i], df=prior_nu, scale=S_0,
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)) for i in range(k)

) + np.log(stats.dirichlet.pdf(pi, alpha=prior_alpha))

pi_term = (r * np.log(pi)[np.newaxis,:]).sum()

likelihood_term = r * np.log(likelihood(X, theta))

likelihood_term = likelihood_term[r > 1e-12].sum()

return likelihood_term + pi_term + log_prior

return em(

X, k, theta, objective,

likelihood, m_step, max_iter=max_iter,

print_freq=print_freq,

)

#### RUN ON DATA ####

red = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv", sep=";")

white = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv", sep=";")

X = np.concatenate((red.as_matrix(), white.as_matrix()), axis=0)

y = np.zeros((X.shape[0],))

y[:red.shape[0]] = 1

k = 2

obj, r, pi, theta = gmm(

X, k, np.ones(2), max_iter=30, print_freq=10,

)

plt.plot(obj)

plt.title("MAP Gaussian Mixture Model")

plt.xlabel("Iteration")

plt.ylabel("Complete Data Log Likelihood")

plt.savefig("nov_7/gmm_convergence.pdf")

y_pred = np.argmax(r,axis=1)

plt.imshow(metrics.confusion_matrix(

y, ~y_pred.astype(bool), # cluster assignments are arbitrary hence the flip

), cmap=plt.cm.gray_r)

plt.title("GMM Confusion Matrix")

plt.ylabel("True Label")

plt.xlabel("Predicted Label")

plt.colorbar()

ticks = np.arange(2)

classes = ["white", "red"]
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plt.xticks(ticks, classes)

plt.yticks(ticks, classes)

plt.savefig("nov_7/3_confusion_matrix.pdf")

4 (MAP Mixture of Bernoullis) Consider a mixture of Bernoullis with a Dirichlet prior on
the mixture weights π ∼ Dir(α) and a Beta prior on the mean parameter µkj ∼ β(α, β).
Use α = 1 and choose an appropriate (α, β) pair for your prior (back this up). Note that
the M step for the mean is given in problem 2 (Murphy 11.3). Cluster the MNIST training
dataset we used from homework 1 (http://pjreddie.com/media/files/mnist_train.
csv) using this mixture with 10 components. Provide a convergence plot of the MAP
objective (which must monotonically increase) and plot the mean images for each com-
ponent. Do the clusters roughly correspond to different digits (back this up somehow)?

Code is below. Note that the complete data log likelihood monotonically increases, so
we can be more sure that our implementation is correct. We chose a β(1, 1) prior on each
mean µkj since it is the weakest proper prior (in fact, it is a uniform distribution - ! - and
hence corresponds exactly to the MLE estimate). Look at our plot of the mean parameters
below. We can see that the means roughly correspond to the digits, but that some digits
are morphed into others that look similar to account for variation within other digits (for
example, the digit 9). Also note that we used the em() function and imports defined in
problem 3 since the implementations are so similar.

Mixture of Bernoullis - Means
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def bernoullis(

X, k, prior_alpha, prior_a, prior_b,

max_iter=100, print_freq=10,

):

""" bernoullis

Bernoulli mixture model with priors.

:param X: data matrix

:type X: array-like of shape [datapoints, features]

:param k: number of mixture components

:type k: int

:param prior_alpha: Dirichlet prior alpha for pi

:type prior_alpha: np.ndarray[k]

:param prior_a: a in the mu ~ Beta(a,b) prior

:type prior_a: float

:param prior_b: b in the mu ~ Beta(a,b) prior

:type prior_b: float

:param max_iter: max number of iterations to take

:type max_iter: int

"""

S_0 = np.diag(np.std(X, axis=0)**2) / k**(1/X.shape[1])

Theta = namedtuple("BMM", "mean")

# compute initial means by partitioning data arbitrarily

theta = Theta(

mean=X[:k*np.floor(X.shape[0]/k)].reshape(

k, -1, X.shape[1],
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).mean(axis=1),

)

def likelihood(X, theta):

p = np.tile(theta.mean.T, (X.shape[0],1,1))

p[X == 0] = 1 - p[X == 0]

p = p.prod(axis=1)

return p

denominator = X.shape[0] + prior_alpha.sum() - k

def m_step(X, r):

r_sum = r.sum(axis=0)

pi = (r_sum + prior_alpha - 1) / denominator

mu = (

((X[:,:,np.newaxis] * r[:,np.newaxis,:]).sum(axis=0) + prior_a - 1) /

(r_sum + prior_a + prior_b - 2)

).T

return pi, Theta(mean=mu)

def objective(X, r, pi, theta):

log_prior = np.log(stats.beta.pdf(

theta.mean, prior_a, prior_b,

)).sum() + np.log(

stats.dirichlet.pdf(pi, alpha=prior_alpha),

)

pi_term = (r * np.log(pi)[np.newaxis,:]).sum()

likelihood_term = r * np.log(likelihood(X, theta))

likelihood_term = likelihood_term[r > 1e-12].sum()

return likelihood_term + pi_term + log_prior

return em(

X, k, theta, objective,

likelihood, m_step, max_iter=max_iter,

print_freq=print_freq,

)

def plot_image(img):

plt.imshow(img.reshape(28,28), cmap="Greys")

plt.axis("off")

### RUN ON DATA ###

train = pd.read_csv("http://pjreddie.com/media/files/mnist_train.csv", header=None)

X = train.iloc[:,1:].as_matrix()
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X = (X > X[X > 0].mean()).astype(float)

y = train.iloc[:,0].as_matrix()

del train

# downsample data by 1/6 to run a bit faster

np.random.seed(1)

N = int(10000)

subset_ix = np.random.randint(0,X.shape[0],(N,))

X_downsample = X[subset_ix]

k = 10

obj, r, pi, theta = bernoullis(

X_downsample, k, prior_alpha=np.ones(10),

prior_a=1, prior_b=1,

max_iter=50, print_freq=10,

)

plt.plot(obj)

plt.title("MAP Bernoulli Mixture Model")

plt.xlabel("Iteration")

plt.ylabel("Complete Data Log Likelihood")

plt.savefig("nov_7/bernoulli_convergence.pdf")

plt.figure(figsize=(5,2))

for i in range(10):

plt.subplot(2,5,i+1)

plot_image(theta.mean[i])

plt.suptitle("Mixture of Bernoullis - Means")

plt.savefig("nov_7/bernoulli_means.pdf")

5 (Operations Preserving Kernels) Let κ(·, ·) and λ(·, ·) be valid positive semi-definite
(Mercer) kernels mapping from a sample space S to R. Let α ≥ 0 be a real number and let
x and y be elements of S . Prove that

(a) ακ(x, y) is a valid kernel.

(b) κ(x, y) + λ(x, y) is a valid kernel.

(c) κ(x, y)λ(x, y) is a valid kernel. Hint: consider the Cholesky decomposition of the
corresponding covariance matrix generated by the product of the kernels.

(d) p(κ(x, y)) is a valid kernel where p(·) is a polynomial with non-negative coefficients.

(e) exp(κ(x, y)) is a valid kernel.
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(f) f (x)κ(x, y) f (y) for all f : S → R.

To prove these, the main method would be to consider an arbitrary covariance matrix
generated by these kernels and assert that the conditions on this covariance matrix (being
symmetric and positive semi-definite) still hold.

(a) Let γ(x, y) = ακ(x, y). Now consider arbitrary covariance matrices Γ and K generated
by the same dataset X such that Γij = γ(xi, xj) and Kij = κ(xi, xj). Then Γ = αK and
clearly Γ is symmetric. Now consider an arbitrary vector v of suitable dimension.
Then v>Γv = v>αKv = αv>Kv ≥ 0 if α ≥ 0 since K is positive semidefinite. It
follows that Γ is symmetric and positive definite for any dataset X, so γ must be a
valid kernel.

(b) Let γ(x, y) = κ(x, y) + λ(x, y). As above, let Γ, K, and Λ be covariance matrices
generated by these kernels. Then Γ = K + Λ. Clearly Γ is symmetric. Consider some
arbitrary v of suitable dimension. Then v>Γv = v>(K + Λ)v = v>Kv + v>Λv ≥ 0
since K and Λ are both positive semidefinite. Therefore Γ is symmetric and positive
semidefinite for an arbitrary dataset X, so γ must be a valid kernel.

(c) Let γ(x, y) = κ(x, y)λ(x, y). As above, let Γ, K, and Λ be covariance matrices gener-
ated by these kernels. Then Γij = KijΛij. Since κ and λ are valid kernels, we know that
K and Λ are positive semi-definite so they must have Cholesky decompositions Kij =

k>i kj and Λij = λ>i λj. Consider an arbitrary vector v of suitable dimension. Then

v>Γv = ∑ij vivjΓij = ∑ij vivjk>i kjλ
>
j λi = ∑i vik>i λi ∑j viλ

>
j k =

(
∑i vik>i λi

)2 ≥ 0
so Γ must be positive semi-definite. Since Γ is symmetric as well, all for an arbitrary
dataset X, we know γ must be a valid kernel.

(d) This is a direct corollary of (a), (b), and (c).

(e) This is a direct corollary of (d) since exp(x) = ∑∞
i=1

xn

n! , a polynomial with non-
negative coefficients.

(f) Let γ(x, y) = f (x)κ(x, y) f (y). As above, let Γ be an arbitrary covariance matrix gen-
erated from some dataset X such that Γij = γ(xi, xj) = f (xi)κ(xi, xj) f (xj). Clearly Γ is
symmetric. Consider an arbitrary vector v of suitable dimension and another vector u
such that ui = vi f (xi). Then v>Γv = ∑ij vivj f (xi)κ(xi, xj) f (xj) = ∑ij [vi f (xi)]

[
vj f (xj)

]
κ(xi, xj) =

∑ij uiujκ(xi, xj) ≥ 0 since κ is positive definite. Then Γ is symmetric and positive
semi-definite for an arbitrary covariance matrix X, so γ must be a valid kernel. Then
v>

6 (Totally Optional Extra Credit) Prove (a), (b), and (c) from problem 5 (above) for the
special case of stationary kernels κ(x, y) = κ(x− y) using Bochner’s Theorem and prop-
erties of Fourier transforms. Note that for (c) the Convolution Theorem might be helpful.
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