Math 189r
Homework 3
November 7, 2016

There are 5 problems in this set. You need to do 3 problems the first week and 2 the sec-
ond week. Instead of a sixth problem, youare encouraged to work on your final project.
Feel free to work with other students, but make sure you write up the homework and
code on your own (no copying homework or code; no pair programming). Feel free to
ask students or instructors for help debugging code or whatever else, though. When
implementing algorithms you may not use any library (such as sklearn) that already im-
plements the algorithms but you may use any other library for data cleaning and numeric
purposes (numpy or pandas). Use common sense. Problems are in no specific order.

1 (Murphy 11.2 - EM for Mixtures of Gaussians) Show that the M step for ML estimation
of a mixture of Gaussians is given by
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2 (Murphy 11.3 - EM for Mixtures of Bernoullis) Show that the M step for ML estimation
of a mixture of Bernoullis is given by
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Show that the M step for MAP estimation of a mixture of Bernoullis with a f(a, B) prior
is given by
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3 (MAP Mixture of Gaussians) Consider a mixture of Gaussians with a Dirichlet prior
on the mixture weights 7t ~ Dir(a) and a Negative Inverse Walshart prior on the mean
and covariance within each class p, Zxy ~ NIW(my, o, v, Sg) with ko = 0 so only the
covariance matrices are regularized. Use Sy = diag(s?,...,s2)/K!/P where sj = Yi(xij —
7]')2 / N is the pooled variance in dimension j. Use 1y = D + 2, as that is the weakest prior
that is still proper. Use & = 1. This is all detailed in Murphy 11.4.2.8. Download the
wine quality data at https://archive.ics.uci.edu/ml/machine-learning-databases/
wine-quality/winequality-red.csvand https://archive.ics.uci.edu/ml/machine-learning-dat:
wine-quality/winequality-white.csv. Pool both red and white wine datasets into one
dataset and cluster this data using a 2 component MAP Gaussian mixture model with the
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EM algorithm. Do the clusters roughly correspond to the color of the wine {white,red}
(back this with numbers)? Provide a convergence plot of the MAP objective. If it doesn’t
monotonically increase there is a bug in your code or math.

4 (MAP Mixture of Bernoullis) Consider a mixture of Bernoullis with a Dirichlet prior on
the mixture weights 7= ~ Dir(a) and a Beta prior on the mean parameter p; ~ B(a, ).
Use & = 1 and choose an appropriate («, ) pair for your prior (back this up). Note that
the M step for the mean is given in problem 2 (Murphy 11.3). Cluster the MNIST training
dataset we used from homework 1 (http://pjreddie.com/media/files/mnist_train.
csv) using this mixture with 10 components. Provide a convergence plot of the MAP
objective (which must monotonically increase) and plot the mean images for each com-
ponent. Do the clusters roughly correspond to different digits (back this up somehow)?

5 (Operations Preserving Kernels) Let x(+,-) and A(-,-) be valid positive semi-definite
(Mercer) kernels mapping from a sample space S to R. Let « > 0 be a real number and let
x and y be elements of S. Prove that

(a) ax(x,y) is a valid kernel.
(b) x(x,y) + A(x,y) is a valid kernel.

(c) k(x,y)A(x,y) is a valid kernel. Hint: consider the Cholesky decomposition of the
corresponding covariance matrix generated by the product of the kernels.

(d) p(x(x,y)) is a valid kernel where p(-) is a polynomial with non-negative coefficients.

(e) exp(x(x,y)) is a valid kernel.
) f(x)x(x,y)f(y) forall f: S — R.

To prove these, the main method would be to consider an arbitrary covariance matrix
generated by these kernels and assert that the conditions on this covariance matrix (being
symmetric and positive semi-definite) still hold.

6 (Totally Optional Extra Credit) Prove (a), (b), and (c) from problem 5 (above) for the
special case of stationary kernels «(x,y) = x(x — y) using Bochner’s Theorem and prop-
erties of Fourier transforms. Note that for (c) the Convolution Theorem might be helpful.
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