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There are 3 problems in this set. Feel free to work with other students, but make sure you
write up the homework and code on your own (no copying homework or code; no pair
programming). Feel free to ask students or instructors for help debugging code or what-
ever else, though. When implementing algorithms you may not use any library (such as
sklearn) that already implements the algorithms but you may use any other library for
data cleaning and numeric purposes (numpy or pandas). Use common sense. Problems are
in no specific order.

1 (Laplace Approximation) Reference Section 8.4 of Murphy on Bayesian Logstic Regres-
sion. We will use the Laplace Approximation to approximate the posterior distribution
over w when we have a prior of the form w ∼ N (0, V0). With the energy function
E(w) = − logP(D|w)− logP(w),

(a) Compute the gradient of the energy ∇E, and

(b) Compute the Hessian of the energy ∇2E.

(c) Using (a) and (b), what is the Laplace approximate posterior over w? Assume we
have the mode of the posterior w? such that ∇E(w?) = 0.

2 (Logistic Regression) Download the data at https://math189r.github.io/hw/data/
classification.csv. Consider the Laplace Approximated Bayesian Logistic Regression
from Problem 1. Calculate the posterior distribution over w.

3 (Monte-Carlo Predictive Posterior) From Problem 2 we have the distribution P(w|D).
Now suppose we want to compute the probability that a test point x belongs to class 1.
Analytically, we marginalize out w as

P(y = 1|x,D) =
∫

P(y = 1|x, w)P(w|D) dw.

Unfortunately, this integral cannot be computed in closed form (we say the integral is
intractable). On the other hand, a Simple Monte Carlo approximation of the integral is

P(y = 1|x,D) ≈ 1
S

S

∑
s=1

P(y = 1|x, w(s)). (w(s) ∼ P(w|D))

This is an unbiased estimate of the true predictive probability in the sense that its expec-
tation is P(y = 1|x,D). This is also easy to compute since we approximated P(w|D) as a
Gaussian, so we can sample from it easily.
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(a) Given a function f (x) where x ∼ P(x), show that

EP({x(s)})[ f̂ ] = E

[
1
S

S

∑
s=1

f (x(s))

]
= E[ f (x)]. (x(s) ∼ P(x))

Put in other terms, show that our Monte Carlo estimator is unbiased.

(b) Show that the variance of the Monte Carlo estimate is proportional to 1/S. That is,
show

VP({x(s)})[ f̂ ] = V[ f (x)]/S.

Note that this means that standard deviation error bars shrink like 1/
√

S.

(c) Plot the posterior predictive distribution P(y = 1|x,D) overlaying your data using
this Monte Carlo approximation. You plot should look similar to Figure 8.6 in Mur-
phy.
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