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Math 189r

Homework 3
November 21, 2016

There are 5 problems in this set. You need to do 3 problems the first week and 2 the
second week. Instead of a sixth problem, you are encouraged to work on your final
project. Feel free to work with other students, but make sure you write up the homework
and code on your own (no copying homework or code; no pair programming). Feel free
to ask students or instructors for help debugging code or whatever else, though. When
implementing algorithms you may not use any library (such as sklearn) that already im-
plements the algorithms but you may use any other library for data cleaning and numeric
purposes (numpy or pandas). Use common sense. Problems are in no specific order.

1 (Gaussian Mixture Model) Consider the generative process for a Gaussian Mixture
Model:

(1) Draw zi ∼ Cat(π) for i = 1, 2, . . . , n.

(2) Draw xi ∼ N (µzi
, Σzi) for i = 1, 2, . . . , n.

Note that zi is unobserved but xi is observed. Express this model as a directed graphi-
cal model, first ‘unrolled’ and then using Plate notation, before answering the following
questions. Support all claims.

(a) Is π independent of µzi
or Σzi given your dataset D = {xi}? Does the posterior distri-

bution over {µ, Σ} and π factorize? How does this change what inference procedure
we need to use for this model?

(b) If zi were observed, would this change? Would the posterior then factorize? Hint:
what other model have we studied that corresponds to observing zi?

(c) Find the maximum likelihood estimates for π, µk, and Σk if the latent variables zi
were observed.

2 (Linear Regression) Consider the Bayesian Linear Regression model with the following
generative process:

(1) Draw w ∼ N (0, V0)

(2) Draw yi ∼ N (w>xi, σ2) for i = 1, 2, . . . , n where σ2 is known.

Express this model as a directed graphical model using Plate notation. Is yi independent
of w? Is yi independent of w given D = {xi}? Support these claims.
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3 (Collaborative Filtering) Consider the ‘ratings’ matrix R ∈ Rm×n with the low rank
approximation R = UV> where U ∈ Rm×k and V ∈ Rn×k with k latent factors. Define
our optimization problem as

minimize: f (U, V) = ‖R−UV>‖2
2 + λ‖U‖2

2 + γ‖V‖2
2

where ‖ · ‖2 in this case is the Frobenius norm ‖R‖2
2 = ∑ij R2

ij. Derive the gradient of f
with respect to Ui and Vj. Derive a stochastic approximation to this gradient where you
consider a single data point at a time.

4 (Alternating Least Squares) Consider the same setup and objective

minimize: f (U, V) = ‖R−UV>‖2
2 + λ‖U‖2

2 + γ‖V‖2
2

as above in problem (3).

(a) Suppose we fix U. Find the optimal V.

(b) Suppose we fix V. Find the optimal U.

(c) Propose an EM-like (block coordinate ascent, to be exact) algorithm for minimizing
f (U, V) using (a) and (b).

(d) Will the algorithm you propose in (c) necessarily converge to the global optimal?

5 (Non-Negative Matrix Factorization) Consider the dataset at http://kdd.ics.uci.

edu/databases/reuters21578/reuters21578.html. Choosing an appropriate objective
function and algorithm from Lee and Seung 20011 implement Non-Negative Matrix Fac-
torization for topic modelling (choose an appropriate number of topics/latent features)
and assert that the convergence properties proved in the paper hold. Display the 20 most
relevant words for each of the topics you discover.

1https://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.
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