
Math 189r Fall 2016 Midterm

Name: Time start/end:

Harvey Mudd College’s Honor Code is in effect for all students taking this exam. If
you feel unclear about any of the following instructions, please ask for clarification.

• This exam should be completed in a contiguous three hour period. If you so
desire, you may insert a twenty minute break at the one an a half hour
mark to get food, etc., but you are still restricted to the resources available to
you during the exam (no internet). You may not write on your exam during
the break if you choose to take one.

• No notes, books, computers or calculators will be allowed during the exam or
break period except for one sheet of notes (8.5×11”, front & back) that you
have prepared yourself. When you are finished, staple the note sheet you used
to the back of the exam. Please turn in your exam paper into the box outside
Professor Gu’s office (SHAN3420) no later than Monday, October, 6:30pm.

• Points may be deducted for answers that are not explained clearly.

• Please pace yourself as this exam has four questions, some with multiple parts.

Problem 1 / 17 points

Problem 2 / 24 points

Problem 3 / 34 points

Problem 4 / 25 points

Total / 100 points
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1. (17 Points) Consider the Ridge Regression optimization problem

minimize : f(x) = ‖Ax− b‖22 + ‖Γx‖22.

(a) Solve for the optimal x? in closed form.

(b) Consider a dataset D = {(0, 1), (1, 2), (2, 1), (3, 2)}. Construct a matrix A and b from
this dataset D and compute the Ridge estimate with Γ = I. Note you may leave your
solution in the form of the inverse of a matrix times a vector instead of computing the
inverse by hand. All other operations must be simplified.



2. (24 Points - 3 each) Indicate whether each of the following statements is true (T) or not
necessarily true (X). Be careful with your answers as no partial credit will be awarded on this
problem.

(a) The following is true: cov[Ax + b] = A>cov[x]A.

(b) Consider minimizing −`(w,Dtrain) + λ‖w‖22 where `(w,D) =∑
i yi log σ(w>xi)+(1−yi) log(1−σ(w>xi)) is the average log-likelihood

on a dataset D for the `2-regularized logistic regression model. If the
training data is linearly separable, might some weights wj become infinite
if λ = 0? (Murphy 8.6.c)

(c) Adding a zero-mean Gaussian Prior on each of the weights in a Logistic
Regression model will encourage sparser weights than a zero-mean
Laplace prior in a Maximum-a-Posteriori estimation of the optimal
parameters.

(d) Minimizing ‖Xw−y‖22 and maximizing the likelihood
∏

iN (yi|w>xi, σ
2)

all result in the Normal Equations, the optimal solution X>Xw? = X>y,
in the context of linear regression.

(e) A covariance matrix Σ could potentially have a negative eigenvalue.

(f) The level sets of a multivariate Gaussian density are always ellipses of
the form {x : x>Ax = k}.

(g) The Multivariate Normal Distribution is not in the exponential family.

(h) The goal of the Support Vector Machine is to maximize the margin,
defined as the distance of the closest examples from the decision boundary.



3. (34 Points) Consider a Poisson distributed X ∼ Poi(λ) defined over X ∈ {0, 1, 2, . . . } with
probability mass function

Poi(x|λ) = e−λ
λx

x!
.

Note that E[X] = λ.

(a) Show that the Poisson distribution is in the Exponential Family.

(b) Consider creating a Generalized Linear Model from the Poisson distribution to model
some count data. This will work since we showed that the distribution is an exponential
family distribution. What is the distribution of the predicted value ŷ given a datapoint
xi and weights w?



(c) Derive an expression for the log-likelihood of a dataset D, logP(D|w). Assume the data
is identically and independently distributed.

(d) Suppose we place an isotropic (Σ = σ2I) Gaussian prior on the weights w. Derive
an expression which, when maximized, would maximize logP(w|D) (basically ignore
constants). Hint: think about problem 1.a from homework 1. You may use results from
that part of the assignment. You may introduce an auxillary variable λ which somehow
relates to σ2 (and you don’t need to define that relationship exactly).

(e) Suppose we want to compute a maximum-a-posteriori estimate of w given the prior
from the previous problem. State the optimization problem we are trying to solve. Is
this solvable in closed form? If so, solve it. Otherwise, compute the gradient of the
objective function with respect to w.



4. (25 Points) Suppose we want to model where we have some input data X, with each datapoint
corresponding to some observed function output f . We also have points X? with which we
want to predict what the function output f? will be. Our modelling assumption is this:

(1) The function outputs are jointly normal with mean µ and covariance K such that(
f
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)
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µ
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)
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(2) The mean µ = µ(X) =

(
m(xi), . . . ,m(xn)

)
for m : X → R where X is the space

your data live in (points on the line, locations on earth, molecules, etc.). Notationally,
µ? = µ(X?).

(3) The covariance between two datapoints Kij = κ(xi,xj) where κ : X × X → R. Later in
the course we’ll call this κ(·, ·) a valid kernel. This implies that K ∈ Rn×n, K? ∈ Rn×n? ,
and K?? ∈ Rn?×n? .

(a) Compute the posterior predictive distribution p(f?|X?,X, f) when we assume that the
observed f has no noise. Hint: consider conditioning a Gaussian.

(b) Compute the posterior predictive distribution p(f?|X?,X,y) where we assume our
observations y = f(x) + ε with ε ∼ N (0, σ2). Hint: this assumption will only change f
to y and K (not K? or K??) into K + σ2I from the equation in (1). For this part assume
the mean µ = 0.

(c) Show that when predicting at only one location x? the mean of the predictive distribution
from the previous part f =

∑n
i=1 αiκ(xi,x?) with α = (K + σ2I)−1y being a constant

vector depending on your training data and kernel. Armed with this knowledge, how
might be we restrict the predicted function f(x) to be periodic? Hint: note that κ(xi,x?)
is function of x? and the sum of periodic functions is periodic.


